Entanglement and the quantum spatial continuum

被引:1
|
作者
Corbett, John V. [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
关键词
Entanglement; quantum spatial continuum;
D O I
10.1063/1.3635841
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-locality of entangled systems provides more evidence that the spatial continuum of quantum particles is not classical. We assume that physical quantities take Dedekind real numbers in a topos for their numerical values. This means that the quantum spatial continuum is isomorphic to R-D(E-S (M))(3), where R-D(ES(M)) the sheaf of Dedekind real numbers in the topos Shv(E-S(M) of sheaves on the state space of the quantum system. In such a continuum, a single particle can have a quantum trajectory which passes through two classically separated slits and two particles in an entangled condition stay close to each other in their quantum space and hence Einstein locality is retained.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
  • [41] Quantum entanglement and information
    Zeilinger, Anton
    Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000,
  • [42] Quantum entanglement and secrecy
    Ekert, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (19): : 3191 - 3202
  • [43] Quantum entanglement suppression
    Dugic, M
    EUROPHYSICS LETTERS, 2002, 60 (01): : 7 - 13
  • [44] Calculation Of Quantum Entanglement
    Yu, Jingshui
    Xu, Wenbo
    2011 TENTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES), 2011, : 87 - 91
  • [46] Measures of quantum entanglement
    Aravind, PK
    COHERENCE AND QUANTUM OPTICS VII, 1996, : 403 - 404
  • [47] LINKS AND QUANTUM ENTANGLEMENT
    Solomon, Allan I.
    Ho, Choon-Lin
    QUANTUM MECHANICS, ELEMENTARY PARTICLES, QUANTUM COSMOLOGY AND COMPLEXITY, 2011, : 646 - 653
  • [48] Detecting quantum entanglement
    Terhal, BM
    THEORETICAL COMPUTER SCIENCE, 2002, 287 (01) : 313 - 335
  • [49] Quantum entanglement and quantum computational algorithms
    Arvind
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (2-3): : 357 - 365
  • [50] QUANTUM CRYPTOGRAPHY WITH INTERFEROMETRIC QUANTUM ENTANGLEMENT
    EKERT, AK
    PALMA, GM
    JOURNAL OF MODERN OPTICS, 1994, 41 (12) : 2413 - 2423