Entanglement and the quantum spatial continuum

被引:1
|
作者
Corbett, John V. [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
关键词
Entanglement; quantum spatial continuum;
D O I
10.1063/1.3635841
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-locality of entangled systems provides more evidence that the spatial continuum of quantum particles is not classical. We assume that physical quantities take Dedekind real numbers in a topos for their numerical values. This means that the quantum spatial continuum is isomorphic to R-D(E-S (M))(3), where R-D(ES(M)) the sheaf of Dedekind real numbers in the topos Shv(E-S(M) of sheaves on the state space of the quantum system. In such a continuum, a single particle can have a quantum trajectory which passes through two classically separated slits and two particles in an entangled condition stay close to each other in their quantum space and hence Einstein locality is retained.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
  • [21] Spatial entanglement using a quantum walk on a many-body system
    Goyal, Sandeep K.
    Chandrashekar, C. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (23)
  • [22] Temporal and spatial dependence of quantum entanglement from a field theory perspective
    Lin, Shih-Yuin
    Hu, B. L.
    PHYSICAL REVIEW D, 2009, 79 (08):
  • [23] Spatial entanglement between two quantum walkers with exchange symmetric coins
    Muhammad, Ibrahim Yahaya
    Deesuwan, Tanapat
    Yoo-Kong, Sikarin
    Tangwancharoen, Suwat
    Tanasittikosol, Monsit
    PHYSICS LETTERS A, 2024, 521
  • [24] Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities
    Wang, Tie-Jun
    Song, Si-Yu
    Long, Gui Lu
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [25] Spatial multipartite entanglement and localization of entanglement
    Daems, D.
    Cerf, N. J.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [26] Quantum entanglement
    Vedral, Vlatko
    NATURE PHYSICS, 2014, 10 (04) : 256 - 258
  • [27] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942
  • [28] Quantum entanglement
    Vlatko Vedral
    Nature Physics, 2014, 10 : 256 - 258
  • [29] Quantum entanglement and quantum teleportation
    Shih, YH
    ANNALEN DER PHYSIK, 2001, 10 (1-2) : 19 - 34
  • [30] Quantum entanglement and quantum operation
    Ye MingYong
    Zhang YongSheng
    Guo GuangCan
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2008, 51 (01): : 14 - 21