Glutathione redox regulates TGF-β-induced fibrogenic effects through Smad3 activation

被引:21
|
作者
Ono, Akihiro [1 ]
Utsugi, Mitsuyoshi [1 ]
Masubuchi, Ken [1 ]
Ishizuka, Tamotsu [1 ]
Kawata, Tadayoshi [1 ]
Shimizu, Yasuo [1 ]
Hisada, Takeshi [1 ]
Hamuro, Junji [2 ]
Mori, Masatomo [1 ]
Dobashi, Kunio [3 ]
机构
[1] Gunma Univ, Grad Sch Med, Dept Med & Mol Sci, Maebashi, Gunma 3718511, Japan
[2] Keio Univ, Sch Med, Dept Microbiol & Immunol, Tokyo, Japan
[3] Gunma Univ, Fac Med, Sch Hlth Sci, Maebashi, Gunma 3718511, Japan
关键词
Glutathione redox; Transforming growth factor-beta; Smad; Fibrogenic effect; Human lung fibroblast; Bronchial smooth muscle cell; TISSUE GROWTH-FACTOR; SMOOTH-MUSCLE CELLS; TRANSFORMING GROWTH-FACTOR-BETA-1; EXTRACELLULAR-MATRIX; EXPRESSION; BINDING; RANTES; MODEL; P38;
D O I
10.1016/j.febslet.2008.12.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor-beta (TGF-beta) plays a pivotal role in the fibrogenic action involved in theinduction of connective tissue growth factor (CTGF), extracellular matrix and fibroblast transformation. Smad3 mediates TGF-beta signaling related to the fibrotic response. In human lung fibroblasts or bronchial smooth muscle cells, we demonstrated that an increase in the intracellular glutathione level suppressed TGF-beta 1-induced phosphorylation of Smad3, while inhibiting TGF-beta 1-induced expressions of CTGF, collagen type1, fibronectin and transformation into myofibroblasts, which are characterized by the expression of alpha-smooth muscle actin. These data indicate that the intracellular glutathione redox status regulates TGF-beta-induced fibrogenic effects through Smad3 activation. (C) 2008 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 50 条
  • [1] Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling
    Sun, Y
    Liu, XD
    Eaton, EN
    Lane, WS
    Lodish, HF
    Weinberg, RA
    MOLECULAR CELL, 1999, 4 (04) : 499 - 509
  • [2] TGF-β induced activation of ERK regulates Smad degradation
    Hough, Chris
    Dore, Jules J.
    CANCER RESEARCH, 2006, 66 (08)
  • [3] TGF-β/Smad3 signaling regulates pancreatic islet β cell function
    Rane, Sushil G.
    Lin, Huei-Min
    Lee, Ji-Hyeon
    Yadav, Hariom
    Matschinsky, Franz
    Harlan, David M.
    FASEB JOURNAL, 2009, 23
  • [4] TGF-β1 REGULATES PROLIFERATION OF INTRAHEPATIC CHOLANGIOCARCINOMA CELLS VIA SMAD3
    Munker, S.
    Li, Q.
    Liu, Y.
    Meyer, C.
    Dooley, S.
    Weng, H. -L.
    Li, J.
    JOURNAL OF HEPATOLOGY, 2012, 56 : S122 - S122
  • [5] TGF-β, Smad3 and the process of progressive fibrosis
    Gauldie, J.
    Bonniaud, P.
    Sime, P.
    Ask, K.
    Kolb, M.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2007, 35 : 661 - 664
  • [6] Quercetin regulates fibrogenic responses of endometrial stromal cell by upregulating miR-145 and inhibiting the TGF-β1/Smad2/Smad3 pathway
    Xu, Jia
    Tan, Ya-Li
    Liu, Qi-Ying
    Huang, Zi-Chun
    Qiao, Zong-Hui
    Li, Tai
    Hu, Zhi-Qiang
    Lei, Lei
    ACTA HISTOCHEMICA, 2020, 122 (07)
  • [7] Calreticulin regulates hepatic stellate cell activation through modulating TGF-β-induced Smad signaling
    Huang, K. -T.
    Hsu, L. -W.
    Chen, K. -D.
    Kung, C. -P.
    Li, S. -R.
    Chen, C. -C.
    Chen, C. -L.
    LIVER TRANSPLANTATION, 2024, 30 : 129 - 130
  • [8] Differential regulation of TGF-β signaling through Smad2, Smad3 and Smad4
    Kretschmer, A
    Moepert, K
    Dames, S
    Sternberger, M
    Kaufmann, J
    Klippel, A
    ONCOGENE, 2003, 22 (43) : 6748 - 6763
  • [9] Differential regulation of TGF-β signaling through Smad2, Smad3 and Smad4
    Anny Kretschmer
    Kristin Moepert
    Sibylle Dames
    Maria Sternberger
    Joerg Kaufmann
    Anke Klippel
    Oncogene, 2003, 22 : 6748 - 6763
  • [10] TGF-β1 attenuated branching morphogenesis of embryonic murine submandibular gland through Smad3 activation
    Gao, P.
    Qiao, X. -H.
    Gou, L. -M.
    Huang, Y.
    Li, Q. -H.
    Li, L. -J.
    Wang, X. -Y.
    Li, C. -J.
    ANATOMIA HISTOLOGIA EMBRYOLOGIA, 2017, 46 (06) : 600 - 605