Comments on the nonlinear Schrodinger equation

被引:0
|
作者
Davidson, MP [1 ]
机构
[1] Spectel Res Corp, Palo Alto, CA 94303 USA
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General physics, relativity, astronomy and mathematical physics and methods.
引用
收藏
页码:1291 / 1295
页数:5
相关论文
共 50 条
  • [21] Derivation of Nonlinear Schrodinger Equation
    Wu, Xiang-Yao
    Zhang, Bai-Jun
    Liu, Xiao-Jing
    Xiao, Li
    Wu, Yi-Heng
    Wang, Yan
    Wang, Qing-Cai
    Cheng, Shuang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (10) : 2437 - 2445
  • [22] A stochastic nonlinear Schrodinger equation
    Debussche, A
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 292 - 295
  • [23] Eigenvalues of the nonlinear Schrodinger equation
    Geltman, S.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [24] Solving the nonlinear Schrodinger equation
    Forestieri, E
    Secondini, M
    OPTICAL COMMUNICATION THEORY AND TECHNIQUES, 2005, : 3 - +
  • [25] On the forced nonlinear Schrodinger equation
    Shull, R
    Bu, C
    Wang, HF
    Chu, ML
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 626 - 630
  • [26] On a deformation of the nonlinear Schrodinger equation
    Arnaudon, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (12)
  • [27] Symmetries of the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04): : 603 - 618
  • [28] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [29] Marchenko equation for the derivative nonlinear Schrodinger equation
    Huang Nian-Ning
    CHINESE PHYSICS LETTERS, 2007, 24 (04) : 894 - 897
  • [30] ASSUMPTIONS IMPLYING THE SCHRODINGER-EQUATION - COMMENTS
    GISIN, N
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (01) : 86 - 87