Efficient quadrature rules for solving nonlinear fractional integro-differential equations of the Hammerstein type

被引:11
|
作者
Susahab, D. Nazari [1 ]
Shahmorad, S. [2 ]
Jahanshahi, M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 5375171379, Iran
[2] Univ Tabriz, Dept Appl Math, Tabriz 5166616471, Iran
关键词
Quadrature method; Hammerstein type; Fractional integro-differential equations; OPERATIONAL MATRIX; VOLTERRA;
D O I
10.1016/j.apm.2015.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to solve nonlinear fractional integro-differential equations of the Hammerstein type. The basic idea is to convert fractional integro-differential equations to a type of second kind Volterra integral equations. Then the obtained Volterra integral equation will be solved with some suitable quadrature rules. We are interested in using a simple method to obtain riveting results. Numerical tests for demonstrating the convergence and accuracy of the method will be included. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:5452 / 5458
页数:7
相关论文
共 50 条
  • [31] A New Operational Method for Solving Nonlinear Volterra Integro-differential Equations with Fractional Order
    Moghadam, M. Mohseni
    Saeedi, H.
    Mollahasani, N.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2010, 2 (2-3): : 95 - 107
  • [32] Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Mohammadi, F.
    Cattani, C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 37 - 48
  • [33] On nonlinear integro-differential equations of hyperbolic type
    Dezern, D. H.
    Adeyeye, J. O.
    Pandit, S. G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1802 - E1806
  • [34] A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order
    Saeedi, H.
    Moghadam, M. Mohseni
    Mollahasani, N.
    Chuev, G. N.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) : 1154 - 1163
  • [35] A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations
    Gao, Er
    Song, Songhe
    Zhang, Xinjian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [36] The solving integro-differential equations of fractional order with the ultraspherical functions
    Panahi, Saeid
    Khani, Ali
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 205 - 211
  • [37] Solving Fractional Fredholm Integro-Differential Equations by Laguerre Polynomials
    Dascioglu, Aysegul
    Bayram, Dilek Varol
    SAINS MALAYSIANA, 2019, 48 (01): : 251 - 257
  • [38] Legendre wavelets method for solving fractional integro-differential equations
    Meng, Zhijun
    Wang, Lifeng
    Li, Hao
    Zhang, Wei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (06) : 1275 - 1291
  • [39] Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions
    Bashir Ahmad
    Ahmed Alsaedi
    Boundary Value Problems, 2012
  • [40] Fejer-Quadrature Collocation Algorithm for Solving Fractional Integro-Differential Equations via Fibonacci Polynomials
    Youssri, Y. H.
    Atta, A. G.
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 296 - 308