Legendre wavelets method for solving fractional integro-differential equations

被引:44
|
作者
Meng, Zhijun [1 ]
Wang, Lifeng [1 ]
Li, Hao [2 ]
Zhang, Wei [2 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Technol, Beijing 100191, Peoples R China
[2] Aviat Representat Bur Beijing, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
65D15; 65L70; 65D30; operational matrix; Legendre wavelets; numerical solution; convergence; fractional integro-differential equation; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; TRANSFORM METHOD; ORDER; DIFFUSION;
D O I
10.1080/00207160.2014.932909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the constructed Legendre wavelets operational matrix of integration of fractional order, a numerical method for solving linear and nonlinear fractional integro-differential equations is proposed. By using the operational matrix, the linear and nonlinear fractional integro-differential equations are reduced to a system of algebraic equations which are solved through known numerical algorithms. The upper bound of the error of the Legendre wavelets expansion is investigated in Theorem 5.1. Finally, four numerical examples are shown to illustrate the efficiency and accuracy of the approach.
引用
收藏
页码:1275 / 1291
页数:17
相关论文
共 50 条
  • [1] Solving fractional Fredholm integro-differential equations using Legendre wavelets
    Abbaszadeh, D.
    Kajani, M. Tavassoli
    Momeni, M.
    Zahraei, M.
    Maleki, M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 168 - 185
  • [2] SOLVING TWO-DIMENSIONAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY LEGENDRE WAVELETS
    Mojahedfar, M.
    Marzabad, A. Tari
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (07): : 2419 - 2435
  • [3] A NEW METHOD TO SOLVE DUAL SYSTEMS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY LEGENDRE WAVELETS
    Kavehsarchogha, Razieh
    Ezzati, Reza
    Karamikabir, Nasrin
    Yaghobbi, Farajollah Mohammadi
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (06): : 951 - 968
  • [4] A Legendre collocation method for fractional integro-differential equations
    Saadatmandi, Abbas
    Dehghan, Mehdi
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (13) : 2050 - 2058
  • [5] Solving linear integro-differential equation with Legendre wavelets
    Kajani, MT
    Vencheh, AH
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (06) : 719 - 726
  • [6] Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel
    Yi, Mingxu
    Wang, Lifeng
    Huang, Jun
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (04) : 3422 - 3437
  • [7] Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Mohammadi, F.
    Cattani, C.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 37 - 48
  • [8] The Legendre Wavelet Method for Solving Singular Integro-differential Equations
    Aghazadeh, Naser
    Atani, Y. Gholizade
    Noras, P.
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 62 - 68
  • [9] INVESTIGATION OF SOLUTIONS TO THE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS OF BRATU-TYPE USING LEGENDRE WAVELETS METHOD
    Felahat, M.
    Kadkhoda, N.
    Feckan, M.
    [J]. MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 189 - 202
  • [10] A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets
    Longbin Wu
    Zhong Chen
    Xiaohua Ding
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 1467 - 1483