Seeking efficient data augmentation schemes via conditional and marginal augmentation

被引:114
|
作者
Meng, XL [1 ]
Van Dyk, DA
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
auxiliary variable; EM algorithm; incomplete data; Markov chain Monte Carlo; PXEM algorithm; rate of convergence; working parameter;
D O I
10.1093/biomet/86.2.301
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data augmentation, sometimes known as the method of auxiliary variables, is a powerful tool for constructing optimisation and simulation algorithms. In the context of optimisation, Meng & van Dyk (1997, 1998) reported several successes of the 'working parameter' approach for constructing efficient data-augmentation schemes for fast and simple EM-type algorithms. This paper investigates the use of working parameters in the context of Markov chain Monte Carlo, in particular in the context of Tanner & Wong's (1987) data augmentation algorithm, via a theoretical study of two working-parameter approaches, the conditional augmentation approach and the marginal augmentation approach. Posterior sampling under the univariate t model is used as a running example, which particularly illustrates how the marginal augmentation approach obtains a fast-mixing positive recurrent Markov chain by first constructing a nonpositive recurrent Markov chain in a larger space.
引用
收藏
页码:301 / 320
页数:20
相关论文
共 50 条
  • [31] Utilizing conditional generative adversarial networks for data augmentation in logging evaluation
    Qiao, Lu
    He, Taohua
    Liu, Xianglong
    He, Jiayi
    Zeng, Qianghao
    Zhao, Ya
    Yang, Shengyu
    Hu, Qinhorng
    [J]. Physics of Fluids, 2025, 37 (03)
  • [32] Conditional Generative Adversarial Networks for Data Augmentation in Breast Cancer Classification
    Wong, Weng San
    Amer, Mohammed
    Maul, Tomas
    Liao, Iman Yi
    Ahmed, Amr
    [J]. RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 : 392 - 402
  • [33] Aerial GANeration: Towards Realistic Data Augmentation Using Conditional GANs
    Milz, Stefan
    Ruediger, Tobias
    Suess, Sebastian
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 59 - 72
  • [34] EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN
    Luo, Yun
    Lu, Bao-Liang
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2535 - 2538
  • [35] Conditional likelihood inference under complex ascertainment using data augmentation
    Clayton, D
    [J]. BIOMETRIKA, 2003, 90 (04) : 976 - 981
  • [36] Auxiliary Conditional Generative Adversarial Networks for Image Data Set Augmentation
    Mudavathu, Kalpana Devi Bai
    Rao, V. P. Chandra Sekhara
    Ramana, K., V
    [J]. PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, : 263 - 269
  • [37] Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset
    Lyra, Simon
    Mustafa, Arian
    Rixen, Joeran
    Borik, Stefan
    Lueken, Markus
    Leonhardt, Steffen
    [J]. SENSORS, 2023, 23 (02)
  • [38] BOOSTING SUPERVISED LEARNING IN SMALL DATA REGIMES WITH CONDITIONAL GAN AUGMENTATION
    Ishikawa, Tetsuya
    Stent, Simon
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1351 - 1355
  • [39] Fruit quality and defect image classification with conditional GAN data augmentation
    Bird, Jordan J.
    Barnes, Chloe M.
    Manso, Luis J.
    Ekart, Aniko
    Faria, Diego R.
    [J]. SCIENTIA HORTICULTURAE, 2022, 293
  • [40] Functional Magnetic Resonance Imaging Data Augmentation Through Conditional ICA
    Tajini, Badr
    Richard, Hugo
    Thirion, Bertrand
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 491 - 500