EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN

被引:0
|
作者
Luo, Yun [1 ,2 ]
Lu, Bao-Liang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Ctr Brain Comp & Machine Intelligence, Dept Comp Sci & Engn, Key Lab Shanghai Educ Commiss Intelligent Interac, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Brain Sci & Technol Res Ctr, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
ART;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to the lack of electroencephalography (EEG) data, it is hard to build an emotion recognition model with high accuracy from EEG signals using machine learning approach. Inspired by generative adversarial networks (GANs), we introduce a Conditional Wasserstein GAN (CWGAN) framework for EEG data augmentation to enhance EEG-based emotion recognition. A Wasserstein GAN with gradient penalty is adopted to generate realistic-like EEG data in differential entropy (DE) form. Three indicators are used to judge the qualities of the generated high-dimensional EEG data, and only high quality data are appended to supplement the data manifold, which leads to better classification of different emotions. We evaluate the proposed CWGAN framework on two public EEG datasets for emotion recognition, namely SEED and DEAP. The experimental results demonstrate that using the EEG data generated by CWGAN significantly improves the accuracies of emotion recognition models.
引用
下载
收藏
页码:2535 / 2538
页数:4
相关论文
共 50 条
  • [1] EEG data augmentation for emotion recognition with a multiple generator conditional Wasserstein GAN
    Zhang, Aiming
    Su, Lei
    Zhang, Yin
    Fu, Yunfa
    Wu, Liping
    Liang, Shengjin
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (04) : 3059 - 3071
  • [2] EEG data augmentation for emotion recognition with a multiple generator conditional Wasserstein GAN
    Aiming Zhang
    Lei Su
    Yin Zhang
    Yunfa Fu
    Liping Wu
    Shengjin Liang
    Complex & Intelligent Systems, 2022, 8 : 3059 - 3071
  • [3] EEG Data Augmentation for Emotion Recognition with a Task-Driven GAN
    Liu, Qing
    Hao, Jianjun
    Guo, Yijun
    ALGORITHMS, 2023, 16 (02)
  • [4] Self-Attention GAN for EEG Data Augmentation and Emotion Recognition
    Chen, Jingxia
    Tang, Zhezhe
    Lin, Wentao
    Hu, Kailei
    Xie, Jia
    Computer Engineering and Applications, 2024, 59 (05) : 160 - 168
  • [5] Data Augmentation Using Conditional GANs for Facial Emotion Recognition
    Yi, Wei
    Sun, Yaoran
    He, Sailing
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 710 - 714
  • [6] Data Augmentation for Audio-Visual Emotion Recognition with an Efficient Multimodal Conditional GAN
    Ma, Fei
    Li, Yang
    Ni, Shiguang
    Huang, Shao-Lun
    Zhang, Lin
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [7] EEG Feature Extraction and Data Augmentation in Emotion Recognition
    Kalashami, Mahsa Pourhosein
    Pedram, Mir Mohsen
    Sadr, Hossein
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [8] Enhanced Speech Emotion Recognition Using Conditional-DCGAN-Based Data Augmentation
    Roh, Kyung-Min
    Lee, Seok-Pil
    Applied Sciences (Switzerland), 2024, 14 (21):
  • [9] Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
    Bao, Guangcheng
    Yan, Bin
    Tong, Li
    Shu, Jun
    Wang, Linyuan
    Yang, Kai
    Zeng, Ying
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
  • [10] Speech Emotion Recognition Using Data Augmentation
    Kapoor, Tanisha
    Ganguly, Arnaja
    Rajeswari, D.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,