EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN

被引:0
|
作者
Luo, Yun [1 ,2 ]
Lu, Bao-Liang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Ctr Brain Comp & Machine Intelligence, Dept Comp Sci & Engn, Key Lab Shanghai Educ Commiss Intelligent Interac, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Brain Sci & Technol Res Ctr, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
ART;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to the lack of electroencephalography (EEG) data, it is hard to build an emotion recognition model with high accuracy from EEG signals using machine learning approach. Inspired by generative adversarial networks (GANs), we introduce a Conditional Wasserstein GAN (CWGAN) framework for EEG data augmentation to enhance EEG-based emotion recognition. A Wasserstein GAN with gradient penalty is adopted to generate realistic-like EEG data in differential entropy (DE) form. Three indicators are used to judge the qualities of the generated high-dimensional EEG data, and only high quality data are appended to supplement the data manifold, which leads to better classification of different emotions. We evaluate the proposed CWGAN framework on two public EEG datasets for emotion recognition, namely SEED and DEAP. The experimental results demonstrate that using the EEG data generated by CWGAN significantly improves the accuracies of emotion recognition models.
引用
下载
收藏
页码:2535 / 2538
页数:4
相关论文
共 50 条
  • [31] Enhanced Speech Emotion Recognition Using DCGAN-Based Data Augmentation
    Baek, Ji-Young
    Lee, Seok-Pil
    Tsihrintzis, George A.
    ELECTRONICS, 2023, 12 (18)
  • [32] Adversarial Data Augmentation Network for Speech Emotion Recognition
    Yi, Lu
    Mak, Man-Wai
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 529 - 534
  • [33] BERT for Activity Recognition Using Sequences of Skeleton Features and Data Augmentation with GAN
    Ramirez, Heilym
    Velastin, Sergio A.
    Cuellar, Sara
    Fabregas, Ernesto
    Farias, Gonzalo
    SENSORS, 2023, 23 (03)
  • [34] Leukocyte Recognition Using a Modified AlexNet and Image to Image GAN Data Augmentation
    Reyes-Esparza, Armando
    Chacon-Murguia, Mario, I
    Ramirez-Quintana, Juan A.
    Arzate-Quintana, Carlos
    PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 139 - 148
  • [35] Emotion Recognition Using Portable EEG Device
    Sakalle, Aditi
    Tomar, Pradeep
    Bhardwaj, Harshit
    Bhardwaj, Arpit
    ARTIFICIAL INTELLIGENCE AND SUSTAINABLE COMPUTING FOR SMART CITY, AIS2C2 2021, 2021, 1434 : 17 - 30
  • [36] Interpretable Emotion Recognition Using EEG Signals
    Qing, Chunmei
    Qiao, Rui
    Xu, Xiangmin
    Cheng, Yongqiang
    IEEE ACCESS, 2019, 7 : 94160 - 94170
  • [37] Conditional Domain Adaptation Based on Initial Distribution Discrepancy for EEG Emotion Recognition
    Zhao, Mohan
    Pang, Lu
    Lu, Yan
    Xie, Fei
    He, Zhenghao
    Gong, Xiaoliang
    Cohn, Anthony George
    CLINICAL IMAGE-BASED PROCEDURES, CLIP 2022, 2023, 13746 : 72 - 81
  • [38] BOOSTING SUPERVISED LEARNING IN SMALL DATA REGIMES WITH CONDITIONAL GAN AUGMENTATION
    Ishikawa, Tetsuya
    Stent, Simon
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1351 - 1355
  • [39] Fruit quality and defect image classification with conditional GAN data augmentation
    Bird, Jordan J.
    Barnes, Chloe M.
    Manso, Luis J.
    Ekart, Aniko
    Faria, Diego R.
    SCIENTIA HORTICULTURAE, 2022, 293
  • [40] Conditional-GAN Based Data Augmentation for Deep Learning Task Classifier Improvement Using fNIRS Data
    Wickramaratne, Sajila D.
    Mahmud, Md Shaad
    FRONTIERS IN BIG DATA, 2021, 4