Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo

被引:22
|
作者
Burley, Kalistyn H. [1 ]
Gill, Samuel C. [2 ]
Lim, Nathan M. [1 ]
Mobley, David L. [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
BINDING FREE-ENERGIES; ALANINE DIPEPTIDE; LIGAND-BINDING; T4; LYSOZYME; MOLECULAR-DYNAMICS; CONFORMATIONAL-ANALYSIS; NONPOLAR CAVITY; SIMULATIONS; PREFERENCES; SPECIFICITY;
D O I
10.1021/acs.jctc.8b01018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular simulations are a valuable tool for studying bomolecular motions and thermodynamics. However, such motions can be slow compared to simulation time scales, yet critical Specifically, adequate sampling of side chain motions in protein binding pockets is crucial for obtaining accurate estimates of ligand binding free energies from molecular simulations. The time scale of side chain rotamer flips can range from a few ps to several hundred ns or longer, particularly in crowded environments like the interior of proteins. Here, we apply a mixed nonequilibrium candidate Monte Carlo (NCMC)/molecular dynamics (MD) method to enhance sampling of side chain rotamers. The NCMC portion of our method applies a switching protocol wherein the steric and electrostatic interactions between target side chain atoms and the surrounding environment are cycled off and then back on during the course of a move proposal. Between NCMC move proposals, simulation of the system continues via traditional molecular dynamics. Here, we first validate this approach on a simple, solvated valine-alanine dipeptide system and then apply it to a well-studied model ligand binding site in T4 lysozyme L99A. We compute the rate of rotamer transitions for a valine side chain using our approach and compare it to that of traditional molecular dynamics simulations. Here, we show that our NCMC/MD method substantially enhances side chain sampling, especially in systems where the torsional barrier to rotation is high (>= 10 kcal/mol). These barriers can be intrinsic torsional barriers or steric barriers imposed by the environment. Overall, this may provide a promising strategy to selectively improve side chain sampling in molecular simulations.
引用
收藏
页码:1848 / 1862
页数:15
相关论文
共 50 条
  • [41] In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling
    Thomas Dalgaty
    Niccolo Castellani
    Clément Turck
    Kamel-Eddine Harabi
    Damien Querlioz
    Elisa Vianello
    Nature Electronics, 2021, 4 : 151 - 161
  • [42] In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling
    Dalgaty, Thomas
    Castellani, Niccolo
    Turck, Clement
    Harabi, Kamel-Eddine
    Querlioz, Damien
    Vianello, Elisa
    NATURE ELECTRONICS, 2021, 4 (02) : 151 - 161
  • [43] MCMC-ODPR: Primer design optimization using Markov Chain Monte Carlo sampling
    James L Kitchen
    Jonathan D Moore
    Sarah A Palmer
    Robin G Allaby
    BMC Bioinformatics, 13
  • [44] MCMC-ODPR: Primer design optimization using Markov Chain Monte Carlo sampling
    Kitchen, James L.
    Moore, Jonathan D.
    Palmer, Sarah A.
    Allaby, Robin G.
    BMC BIOINFORMATICS, 2012, 13
  • [45] Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling
    Blasone, Roberta-Serena
    Vrugt, Jasper A.
    Madsen, Henrik
    Rosbjerg, Dan
    Robinson, Bruce A.
    Zyvoloski, George A.
    ADVANCES IN WATER RESOURCES, 2008, 31 (04) : 630 - 648
  • [46] Markov chain Monte Carlo using an approximation
    Christen, JA
    Fox, C
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (04) : 795 - 810
  • [47] Bayesian penalized empirical likelihood and Markov Chain Monte Carlo sampling
    Chang, Jinyuan
    Tang, Cheng Yong
    Zhu, Yuanzheng
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2025,
  • [48] Cool walking: A new Markov chain Monte Carlo sampling method
    Brown, S
    Head-Gordon, T
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (01) : 68 - 76
  • [49] Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    Anderson-Bergman, Clifford
    BAYESIAN ANALYSIS, 2017, 12 (02): : 465 - 490
  • [50] On input selection with reversible jump Markov chain Monte Carlo sampling
    Sykacek, P
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 638 - 644