Perturbation Analysis of Diffeomorphisms in Contact Dynamical System

被引:0
|
作者
Sun, Dawei [1 ]
机构
[1] Henan Univ Technol, Zhengzhou 450001, Peoples R China
关键词
Contact Dynamical System; Contact Diffeomorphisms; Contact Energy;
D O I
10.4028/www.scientific.net/AMR.529.264
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the perturbations of strictly contact diffeomorphisms in contact dynamical system. By constructing new lifting methods for contact system and using some perturbation techniques in Hamiltonian mechanics, this paper proves that there exists an arbitrary small perturbations such that the corresponding function of the strictly contact isotopy does not equal to a constant at any time.
引用
收藏
页码:264 / 267
页数:4
相关论文
共 50 条
  • [21] Perturbation of a p-adic dynamical system in two variables
    Aguayo, J
    Goméz, J
    Saavedra, M
    Wallace, M
    Ultrametric Functional Analysis, 2005, 384 : 39 - 51
  • [22] Dynamical incoherence for a large class of partially hyperbolic diffeomorphisms
    Barthelme, Thomas
    Fenley, Sergio R.
    Frankel, Steven
    Potrie, Rafael
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (11) : 3227 - 3243
  • [23] On the dynamical coherence of structurally stable 3-diffeomorphisms
    Vyacheslav Z. Grines
    Yulia A. Levchenko
    Vladislav S. Medvedev
    Olga V. Pochinka
    Regular and Chaotic Dynamics, 2014, 19 : 506 - 512
  • [24] A dynamical Lefschetz trace formula for Algebraic anosov diffeomorphisms
    Deitmar, A
    Deninger, C
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2003, 73 (1): : 81 - 98
  • [25] CONSTRAINED SYSTEM PERTURBATION ANALYSIS
    GIBSON, JA
    HAMILTONJENKINS, MA
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1981, 12 (02) : 195 - 204
  • [26] On the dynamical coherence of structurally stable 3-diffeomorphisms
    Grines, Vyacheslav Z.
    Levchenko, Yulia A.
    Medvedev, Vladislav S.
    Pochinka, Olga V.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (04): : 506 - 512
  • [27] A dynamical lefschetz trace formula for algebraic anosov diffeomorphisms
    Anton Deitmar
    Christopher Deninger
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2003, 73 : 81 - 98
  • [28] Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
    Zhang, Jiechao
    Beik-Mohammadi, Hadi
    Rozo, Leonel
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1211 - 1221
  • [29] Partially hyperbolic diffeomorphisms and Lagrangian contact structures
    Mion-Mouton, Martin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (08) : 2583 - 2629
  • [30] COHOMOLOGY EQUATIONS AND COMMUTATORS OF GERMS OF CONTACT DIFFEOMORPHISMS
    BANYAGA, A
    DELALLAVE, R
    WAYNE, CE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (02) : 755 - 778