Perturbation of a p-adic dynamical system in two variables

被引:0
|
作者
Aguayo, J [1 ]
Goméz, J [1 ]
Saavedra, M [1 ]
Wallace, M [1 ]
机构
[1] Concepcion Univ, Dept Matemat, Fac Ciencias Fis & Matemat, Concepcion, Chile
来源
关键词
p-adic numbers; non-archimedean dynamical system; fixed point; attractor; repeller; Siegel disk; perturbation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work the authors study the perturbed dynamical system F-qr in Q(p) x Q(p) defined by (x, y) -> F-qr(x, y) = (x(m), y(n)) + (q(x, y), r(x, y)) where m,n E is an element of N, m >= 2, n >= 2 and the perturbation terms, q(x, y) and r(x,y), are polynomials whose coefficients have small p-adic valuation. They give sufficient conditions on the perturbation terms in order to have a one to one correspondence between fixed points of the non perturbed system F(x, y) = (x(m), y(n)) and of the perturbed one. They also describe the behavior of iterations of points near the fixed points of F-qr, showing preservation of the nature of some fixed points of F.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 50 条
  • [1] On a nonlinear p-adic dynamical system
    Rozikov U.A.
    Sattarov I.A.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6 (1) : 54 - 65
  • [2] A polynomial p-adic dynamical system
    Mukhamedov, F. M.
    Rozikov, U. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 170 (03) : 376 - 383
  • [3] A polynomial p-adic dynamical system
    F. M. Mukhamedov
    U. A. Rozikov
    Theoretical and Mathematical Physics, 2012, 170 : 376 - 383
  • [4] Memory retrieval as a p-adic dynamical system
    Albeverio, S
    Khrennikov, A
    Kloeden, PE
    BIOSYSTEMS, 1999, 49 (02) : 105 - 115
  • [5] Human subconscious as a p-adic dynamical system
    Khrennikov, A
    JOURNAL OF THEORETICAL BIOLOGY, 1998, 193 (02) : 179 - 196
  • [6] On a p-adic Cubic Generalized Logistic Dynamical System
    Mukhamedov, Farrukh
    Rozali, Wan Nur Fairuz Alwani Wan
    INTERNATIONAL CONFERENCE ON ADVANCEMENT IN SCIENCE AND TECHNOLOGY 2012 (ICAST): CONTEMPORARY MATHEMATICS, MATHEMATICAL PHYSICS AND THEIR APPLICATIONS, 2013, 435
  • [7] Dynamical Systems of Mobius Transformation: Real, p-Adic and Complex Variables
    Aliev, E. T.
    Rozikov, U. A.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2024, 16 (01) : 1 - 13
  • [8] ON p-ADIC EULER L-FUNCTION OF TWO VARIABLES
    Kim, Min-Soo
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 369 - 379
  • [9] P-ADIC DYNAMICAL-SYSTEMS
    FREUND, PGO
    OLSON, M
    NUCLEAR PHYSICS B, 1988, 297 (01) : 86 - 102
  • [10] On heights of p-adic dynamical systems
    Li, HC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) : 379 - 386