Poisson manifolds and their associated stacks

被引:2
|
作者
Villatoro, Joel [1 ]
机构
[1] Univ Illinois, Dept Math, 273 Altgeld Hall,1409 W Green St MC 382, Urbana, IL 61801 USA
关键词
Poisson manifold; Dirac structure; Lie groupoid; Differentiable stack; Symplectic groupoid; Morita equivalence; BRACKETS;
D O I
10.1007/s11005-017-1012-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We associate to any integrable Poisson manifold a stack, i.e., a category fibered in groupoids over a site. The site in question has objects Dirac manifolds and morphisms pairs consisting of a smooth map and a closed 2-form. We show that two Poisson manifolds are symplectically Morita equivalent if and only if their associated stacks are isomorphic. We also discuss the non-integrable case.
引用
收藏
页码:897 / 926
页数:30
相关论文
共 50 条
  • [41] A DIFFERENTIAL COMPLEX FOR POISSON MANIFOLDS
    BRYLINSKI, JL
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (01) : 93 - 114
  • [42] A Poisson relation for conic manifolds
    Wunsch, J
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (5-6) : 813 - 828
  • [43] Superintegrable systems on Poisson manifolds
    Kurov, A.
    Sardanashvily, G.
    XXIV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-24), 2017, 804
  • [44] POISSON BRACKETS ON PRESYMPLECTIC MANIFOLDS
    DUBROVIN, BA
    GIORDANO, M
    MARMO, G
    SIMONI, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (21): : 3747 - 3771
  • [45] POISSON STRUCTURES ON CLOSED MANIFOLDS
    Mukherjee, Sauvik
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (01) : 243 - 257
  • [46] Almost homogeneous Poisson manifolds
    Yang, QL
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (01) : 93 - 108
  • [47] Quasi-Poisson manifolds
    Alekseev, A
    Kosmann-Schwarzbach, Y
    Meinrenken, E
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (01): : 3 - 29
  • [48] A GENERALIZATION OF THE QUANTIZATION OF POISSON MANIFOLDS
    Gohara, Jumpei
    Hirota, Yuji
    Sako, Akifumi
    PROCEEDINGS OF THE TWENTY-FIRST INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2020, 21 : 138 - 148
  • [49] POISSON FORMULA FOR HEISENBERG MANIFOLDS
    PESCE, H
    DUKE MATHEMATICAL JOURNAL, 1994, 73 (01) : 79 - 95
  • [50] MORITA EQUIVALENCE OF POISSON MANIFOLDS
    XU, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (03) : 493 - 509