Poisson manifolds and their associated stacks

被引:2
|
作者
Villatoro, Joel [1 ]
机构
[1] Univ Illinois, Dept Math, 273 Altgeld Hall,1409 W Green St MC 382, Urbana, IL 61801 USA
关键词
Poisson manifold; Dirac structure; Lie groupoid; Differentiable stack; Symplectic groupoid; Morita equivalence; BRACKETS;
D O I
10.1007/s11005-017-1012-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We associate to any integrable Poisson manifold a stack, i.e., a category fibered in groupoids over a site. The site in question has objects Dirac manifolds and morphisms pairs consisting of a smooth map and a closed 2-form. We show that two Poisson manifolds are symplectically Morita equivalent if and only if their associated stacks are isomorphic. We also discuss the non-integrable case.
引用
收藏
页码:897 / 926
页数:30
相关论文
共 50 条
  • [21] Almost complex Poisson manifolds
    Cordero, LA
    Fernández, M
    Ibáñez, R
    Ugarte, L
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (3-4) : 265 - 290
  • [22] A Laplace operator for Poisson manifolds
    Saassai, Zouhair
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 68
  • [23] WZW-Poisson manifolds
    Klimcík, C
    Strobl, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 43 (04) : 341 - 344
  • [24] A formality theorem for Poisson manifolds
    Ginot, G
    Halbout, G
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (1-2) : 37 - 64
  • [25] POISSON SCHEMES FOR HAMILTONIAN-SYSTEMS ON POISSON MANIFOLDS
    ZHU, WJ
    QIN, MZ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (12) : 7 - 16
  • [26] DEFORMATIONS OF HOLOMORPHIC POISSON MANIFOLDS
    Hitchin, Nigel
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 567 - 591
  • [27] COISOTROPIC EMBEDDINGS IN POISSON MANIFOLDS
    Cattaneo, A. S.
    Zambon, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) : 3721 - 3746
  • [28] Deformation Quantization of Poisson Manifolds
    Maxim Kontsevich
    Letters in Mathematical Physics, 2003, 66 : 157 - 216
  • [29] POISSON BRACKETS AND CANONICAL MANIFOLDS
    TULCZYJEW, WM
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (09): : 931 - 935
  • [30] Singular reduction of Poisson manifolds
    Ortega, JP
    Ratiu, TS
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (04) : 359 - 372