Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system

被引:448
|
作者
Yi, Fengqi [2 ]
Wei, Junjie [2 ]
Shi, Junping [1 ,3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[3] Harbin Normal Univ, Sch Math, Harbin 150025, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Diffusive predator-prey system; Holling type-II functional response; Hopf bifurcation; Steady state bifurcation; Spatially non-homogeneous periodic orbits; Global bifurcation; LYAPUNOV FUNCTIONS; POSITIVE SOLUTIONS; HOPF-BIFURCATION; LIMIT-CYCLES; MODEL; BEHAVIOR; STABILITY;
D O I
10.1016/j.jde.2008.10.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffusive predator-prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered. Hopf and steady state bifurcation analysis are carried out in details. In particular we show the existence of multiple spatially non-homogeneous periodic orbits while the system parameters are all spatially homogeneous. Our results and global bifurcation theory also suggest the existence of loops of spatially non-homogeneous periodic orbits and steady state solutions. These results provide theoretical evidences to the complex spatiotemporal dynamics found by numerical simulation. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1944 / 1977
页数:34
相关论文
共 50 条
  • [31] Diffusive patterns in a predator-prey system with fear and hunting cooperation
    Sasmal, Sourav Kumar
    Anshu
    Dubey, Balram
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (02):
  • [32] DOUBLE ZERO SINGULARITY AND SPATIOTEMPORAL PATTERNS IN A DIFFUSIVE PREDATOR-PREY MODEL WITH NONLOCAL PREY COMPETITION
    Cao, Xun
    Jiang, Weihua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (09): : 3461 - 3489
  • [33] Bifurcation Analysis and Spatiotemporal Dynamics in a Diffusive Predator-Prey System Incorporating a Holling Type II Functional Response
    Anshu, Balram
    Sajan
    Dubey, Balram
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [34] Bifurcation analysis of a diffusive predator-prey model with prey social behavior and predator harvesting
    Mezouaghi, Abdelheq
    Djilali, Salih
    Bentout, Soufiane
    Biroud, Kheireddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 718 - 731
  • [35] Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality
    Xu, Zhou
    Song, Yongli
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (14) : 2994 - 3006
  • [36] Hopf bifurcation analysis in a diffusive predator-prey system with spatial heterogeneity and delays
    Zhang, Hua
    Wei, Junjie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):
  • [37] Bifurcation analysis in a diffusive predator-prey system with Michaelis-Menten-type predator harvesting
    Song, Qiannan
    Yang, Ruizhi
    Zhang, Chunrui
    Tang, Leiyu
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [38] Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting
    Chang, Xiaoyuan
    Wei, Junjie
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (04): : 379 - 409
  • [39] Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and generalist predator
    Nie, Chenxuan
    Jin, Dan
    Yang, Ruizhi
    AIMS MATHEMATICS, 2022, 7 (07): : 13344 - 13360
  • [40] MULTIPARAMETER BIFURCATION OF A PREDATOR-PREY SYSTEM
    HAINZL, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (01) : 150 - 180