Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system

被引:448
|
作者
Yi, Fengqi [2 ]
Wei, Junjie [2 ]
Shi, Junping [1 ,3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[3] Harbin Normal Univ, Sch Math, Harbin 150025, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Diffusive predator-prey system; Holling type-II functional response; Hopf bifurcation; Steady state bifurcation; Spatially non-homogeneous periodic orbits; Global bifurcation; LYAPUNOV FUNCTIONS; POSITIVE SOLUTIONS; HOPF-BIFURCATION; LIMIT-CYCLES; MODEL; BEHAVIOR; STABILITY;
D O I
10.1016/j.jde.2008.10.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffusive predator-prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered. Hopf and steady state bifurcation analysis are carried out in details. In particular we show the existence of multiple spatially non-homogeneous periodic orbits while the system parameters are all spatially homogeneous. Our results and global bifurcation theory also suggest the existence of loops of spatially non-homogeneous periodic orbits and steady state solutions. These results provide theoretical evidences to the complex spatiotemporal dynamics found by numerical simulation. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1944 / 1977
页数:34
相关论文
共 50 条
  • [21] Bifurcation analysis of a diffusive predator-prey system with nonmonotonic functional response
    Sounvoravong, Bounsanong
    Gao, Jianping
    Guo, Shangjiang
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2901 - 2918
  • [22] HOPF BIFURCATION OF A DIFFUSIVE PREDATOR-PREY SYSTEM WITH NONLOCAL INTRASPECIFIC COMPETITION
    Wu, Haoming
    Shi, Zhaoyan
    Liu, Ming
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2023, 30 (04): : 395 - 411
  • [23] Spatiotemporal Patterns of a Homogeneous Diffusive Predator–Prey System with Holling Type III Functional Response
    Jinfeng Wang
    Journal of Dynamics and Differential Equations, 2017, 29 : 1383 - 1409
  • [24] Revisiting the spatiotemporal dynamics of a diffusive predator-prey system: An analytical approach
    Kumar, Dipankar
    Hasan, Md. Mehedi
    Paul, Gour Chandra
    Debnath, Dipok
    Mondal, Nayan
    Faruk, Omar
    RESULTS IN PHYSICS, 2023, 44
  • [25] Inhomogeneous Hopf Bifurcation in a Diffusive Predator-Prey System with Indirect Predator-Taxis
    Lv, Yehu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024,
  • [26] Spatiotemporal dynamics of a diffusive predator-prey system incorporating social behavior
    Souna, Fethi
    Djilali, Salih
    Alyobi, Sultan
    Zeb, Anwar
    Gul, Nadia
    Alsaeed, Suliman
    Nisar, Kottakkaran Sooppy
    AIMS MATHEMATICS, 2023, 8 (07): : 15723 - 15748
  • [27] THE STABILITY AND BIFURCATION OF HOMOGENEOUS DIFFUSIVE PREDATOR-PREY SYSTEMS WITH SPATIO-TEMPORAL DELAYS
    Tao, Yiwen
    Ren, Jingli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (01): : 229 - 243
  • [28] Spatiotemporal pattern formation in a diffusive predator-prey system: An analytical approach
    Dubey B.
    Kumari N.
    Upadhyay R.K.
    Journal of Applied Mathematics and Computing, 2009, 31 (1-2) : 413 - 432
  • [29] Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference
    Shi, Hong-Bo
    Ruan, Shigui
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (05) : 1534 - 1568
  • [30] A diffusive predator-prey system with prey refuge and predator cannibalism
    Zhang, Yuxuan
    Rong, Xinmiao
    Zhang, Jimin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (03) : 1445 - 1470