Thermodynamic analysis of steam reforming of ethanol for hydrogen generation

被引:61
|
作者
Wang, Wenju [1 ]
Wang, Y. Q. [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
ethanol; steam reforming; hydrogen; thermodynamic equilibrium; Gibbs free energy minimization; coke-free region; inert component;
D O I
10.1002/er.1459
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermodynamic equilibrium of ethanol steam reforming has been studied by Gibbs free energy minimization method for hydrogen production in the ranges of water-to-ethanol ratio from 0 to 20, reaction temperature from 400 to 2000 K, pressure from 1 to 60 atm, argon-to-ethanol ratio from 0 to 100. The optimal conditions suitable for the use in molten carbonate fuel cell and solid oxide fuel cell were obtained as follows: 900-1200 K, water-to-ethanol ratio of 3:6, and 1 atm. Under the optimal conditions, complete conversion of ethanol, 60.52-83.58% yield of hydrogen and 32.82-79.60% yield of carbon monoxide could be obtained and no coke forms. Higher pressures have a negative effect, but inert gases have a positive effect, on the hydrogen yield. Coke tends to form at lower temperatures and lower water-to-ethanol ratios. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1432 / 1443
页数:12
相关论文
共 50 条
  • [31] Steam-reforming of ethanol for hydrogen production
    Ahmed Bshish
    Zahira Yaakob
    Binitha Narayanan
    Resmi Ramakrishnan
    Ali Ebshish
    [J]. Chemical Papers, 2011, 65 : 251 - 266
  • [32] Steam-reforming of ethanol for hydrogen production
    Bshish, Ahmed
    Yakoob, Zahira
    Narayanan, Binitha
    Ramakrishnan, Resmi
    Ebshish, Ali
    [J]. CHEMICAL PAPERS, 2011, 65 (03) : 251 - 266
  • [33] Comparative analysis on sorption enhanced steam reforming and conventional steam reforming of hydroxyacetone for hydrogen production: Thermodynamic modeling
    Fu, Peng
    Yi, Weiming
    Li, Zhihe
    Li, Yanmei
    Wang, Jing
    Bai, Xueyuan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11893 - 11901
  • [34] Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure
    Ammaru Ismaila
    Xueli Chen
    Xin Gao
    Xiaolei Fan
    [J]. Frontiers of Chemical Science and Engineering, 2021, 15 : 60 - 71
  • [35] Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure
    Ismaila, Ammaru
    Chen, Xueli
    Gao, Xin
    Fan, Xiaolei
    [J]. FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (01) : 60 - 71
  • [36] Hydrogen production from steam-methanol reforming: thermodynamic analysis
    Lwin, Y
    Daud, WRW
    Mohamad, AB
    Yaakob, Z
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (01) : 47 - 53
  • [37] A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin
    Adhikari, Sushil
    Fernando, Sandun
    Haryanto, Agus
    [J]. ENERGY & FUELS, 2007, 21 (04) : 2306 - 2310
  • [38] Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure
    Ammaru Ismaila
    Xueli Chen
    Xin Gao
    Xiaolei Fan
    [J]. Frontiers of Chemical Science and Engineering., 2021, 15 (01) - 71
  • [39] Thermodynamic analysis of direct steam reforming of ethanol in molten carbonate fuel cell
    Silveira, Jose Luz
    de Souza, Antonio Carlos Caetano
    da Silva, Marcio Evaristo
    [J]. JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2008, 5 (02):
  • [40] Adsorption-membrane hybrid system for ethanol steam reforming: Thermodynamic analysis
    Saebea, Dang
    Arpornwichanop, Amornchai
    Patcharavorachot, Yaneeporn
    Assabumrungrat, Suttichai
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) : 14428 - 14434