A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin

被引:129
|
作者
Adhikari, Sushil [1 ]
Fernando, Sandun [1 ]
Haryanto, Agus [1 ]
机构
[1] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA
关键词
D O I
10.1021/ef070035l
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Glycerin production has soared with the increase in biodiesel production in recent years. One possibility of using this excess glycerin is in hydrogen production. Steam reforming of glycerin for hydrogen production involves complex reactions. As a result, several intermediate byproducts are formed and end up in the product stream, affecting the final purity of the hydrogen produced. Furthermore, the yield of the hydrogen depends upon several process variables, such as the temperature, ratio of reactants, and system pressure. In this study, a thermodynamic equilibrium analysis coupled with experimentation has been performed for the steam-reforming process of glycerin over the following variable ranges: pressure of 1-5 atm, temperature of 600-1000 K, and water/glycerin feed ratio of 1:1-9:1. The equilibrium concentrations of different compounds were calculated by the method of direct minimization of the Gibbs free energy. The study revealed that the best conditions for producing hydrogen are as follows: temperature of > 900 K, atmospheric pressure, and a molar ratio of water/glycerin at 9:1. Under aforementioned conditions, methane production is minimized and the carbon formation is thermodynamically inhibited. Experimental results over the Ni/MgO catalyst were compared against the results obtained from thermodynamic analysis.
引用
收藏
页码:2306 / 2310
页数:5
相关论文
共 50 条
  • [1] Glycerin steam reforming for hydrogen production
    Fernando, Sandun
    Adhikari, Sushil
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [2] Glycerin steam reforming for hydrogen production
    Adhikari, S.
    Fernando, S. D.
    Haryanto, A.
    [J]. TRANSACTIONS OF THE ASABE, 2007, 50 (02) : 591 - 595
  • [3] Thermodynamic Analysis of Glycerin Steam Reforming
    Wang, Xiaodong
    Li, Shuirong
    Wang, Hao
    Liu, Bo
    Ma, Xinbin
    [J]. ENERGY & FUELS, 2008, 22 (06) : 4285 - 4291
  • [4] Thermodynamic analysis of hydrogen production by steam reforming
    Lutz, AE
    Bradshaw, RW
    Keller, JO
    Witmer, DE
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (02) : 159 - 167
  • [5] Comparative analysis on sorption enhanced steam reforming and conventional steam reforming of hydroxyacetone for hydrogen production: Thermodynamic modeling
    Fu, Peng
    Yi, Weiming
    Li, Zhihe
    Li, Yanmei
    Wang, Jing
    Bai, Xueyuan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11893 - 11901
  • [6] Thermodynamic Analysis of Steam Methane Reforming for Hydrogen Production
    Zhang Qi
    Han Daying
    Jiang Zhongrui
    Wu Kaixian
    Zhu Zibin
    [J]. 2011 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SYSTEMS SCIENCE AND ENGINEERING (ICESSE 2011), VOL 3, 2011, : 359 - 365
  • [7] Steam reforming of ethanol for hydrogen production: Thermodynamic analysis
    Vasudeva, K
    Mitra, N
    Umasankar, P
    Dhingra, SC
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1996, 21 (01) : 13 - 18
  • [8] A thermodynamic analysis of hydrogen production by steam reforming of glycerol
    Adhikari, Sushil
    Fernando, Sandun
    Gwaltney, Steven R.
    To, S. D. Filip
    Bricka, R. Mark
    Steele, Philip H.
    Haryanto, Agus
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (14) : 2875 - 2880
  • [9] Production of hydrogen by steam reforming of glycerin on ruthenium catalyst
    Hirai, T
    Ikenaga, N
    Miyake, T
    Suzuki, T
    [J]. ENERGY & FUELS, 2005, 19 (04) : 1761 - 1762
  • [10] Thermodynamic analysis of steam reforming and oxidative steam reforming of propane and butane for hydrogen production
    Cui, Xiaoti
    Kaer, Soren Knudsen
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (29) : 13009 - 13021