Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo

被引:6
|
作者
Chen, Guannan [1 ]
Lui, Harvey [1 ,2 ,3 ]
Zeng, Haishan [1 ,2 ,3 ]
机构
[1] British Columbia Canc Agcy, Res Ctr, Integrat Oncol Dept, Imaging Unit, 675 West 10th Ave, Vancouver, BC V5Z 1L3, Canada
[2] Univ British Columbia, Dept Dermatol & Skin Sci, Photomed Inst, Vancouver, BC, Canada
[3] Vancouver Coastal Hlth Res Inst, Vancouver, BC, Canada
基金
加拿大健康研究院;
关键词
Image segmentation; multiphoton microscopy (MPM); reflectance confocal microscopy (RCM); watershed; level-set model; SNAKE MODEL;
D O I
10.3978/j.issn.2223-4292.2014.11.02
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. Methods: In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Results: Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Conclusions: Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [21] In vivo reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours
    Koller, S.
    Wiltgen, M.
    Ahlgrimm-Siess, V.
    Weger, W.
    Hofmann-Wellenhof, R.
    Richtig, E.
    Smolle, J.
    Gerger, A.
    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2011, 25 (05) : 554 - 558
  • [22] Reflectance confocal microscopy of skin in vivo: From bench to bedside
    Rajadhyaksha, Milind
    Marghoob, Ashfaq
    Rossi, Anthony
    Halpern, Allan C.
    Nehal, Kishwer S.
    LASERS IN SURGERY AND MEDICINE, 2017, 49 (01) : 7 - 19
  • [23] Cellular Features of Psoriatic Skin: Imaging and Quantification Using In Vivo Reflectance Confocal Microscopy
    Wolberink, E. A. W.
    van Erp, P. E. J.
    Teussink, M. M.
    van de Kerkhof, P. C. M.
    Gerritsen, M. J. P.
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2011, 80B (03) : 141 - 149
  • [24] Smartphone confocal microscopy for imaging cellular structures in human skin in vivo
    Freeman, Esther E.
    Semeere, Aggrey
    Osman, Hany
    Peterson, Gary
    Rajadhyaksha, Milind
    Gonzalez, Salvador
    Martin, Jeffery N.
    Anderson, R. Rox
    Tearney, Guillermo J.
    Kang, Dongkyun
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (04): : 1906 - 1915
  • [25] Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: A comparison
    Masters, BR
    So, PTC
    MICROSCOPY AND MICROANALYSIS, 1999, 5 (04) : 282 - 289
  • [26] Progress in reflectance confocal microscopy for imaging oral tissues in vivo
    Peterson, Gary
    Zanoni, Daniella Karassawa
    Migliacci, Jocelyn
    Cordova, Miguel
    Rajadhyaksha, Milind
    Patel, Snehal
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS XII, 2016, 9689
  • [27] Skin marking for reflectance confocal microscopy
    Verenzuela, C. M.
    Hanlon, K. L.
    Correa-Selm, L.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (08) : B30 - B30
  • [28] Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks
    Hames, Samuel C.
    Ardigo, Marco
    Soyer, H. Peter
    Bradley, Andrew P.
    Prow, Tarl W.
    PLOS ONE, 2016, 11 (04):
  • [29] In vivo confocal reflectance microscopy in melanoma
    Carrera, Cristina
    Puig, Susana
    Malvehy, Josep
    DERMATOLOGIC THERAPY, 2012, 25 (05) : 410 - 422
  • [30] In vivo reflectance confocal microscopy for early diagnosis of nonmelanoma skin cancer
    Ulrich, M.
    Lange-Asschenfeldt, S.
    Gonzalez, S.
    ACTAS DERMO-SIFILIOGRAFICAS, 2012, 103 (09): : 784 - 789