Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo

被引:6
|
作者
Chen, Guannan [1 ]
Lui, Harvey [1 ,2 ,3 ]
Zeng, Haishan [1 ,2 ,3 ]
机构
[1] British Columbia Canc Agcy, Res Ctr, Integrat Oncol Dept, Imaging Unit, 675 West 10th Ave, Vancouver, BC V5Z 1L3, Canada
[2] Univ British Columbia, Dept Dermatol & Skin Sci, Photomed Inst, Vancouver, BC, Canada
[3] Vancouver Coastal Hlth Res Inst, Vancouver, BC, Canada
基金
加拿大健康研究院;
关键词
Image segmentation; multiphoton microscopy (MPM); reflectance confocal microscopy (RCM); watershed; level-set model; SNAKE MODEL;
D O I
10.3978/j.issn.2223-4292.2014.11.02
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. Methods: In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Results: Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Conclusions: Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [11] Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy
    White, WM
    Rajadhyaksha, M
    González, S
    Fabian, RL
    Anderson, RR
    LARYNGOSCOPE, 1999, 109 (10): : 1709 - 1717
  • [12] In vivo reflectance confocal microscopy image interpretation for the dermatopathologist
    Shahriari, Neda
    Grant-Kels, Jane M.
    Rabinovitz, Harold
    Oliviero, Margaret
    Scope, Alon
    JOURNAL OF CUTANEOUS PATHOLOGY, 2018, 45 (03) : 187 - 197
  • [13] Image brightness adaptive adjustment during skin imaging by reflectance confocal microscopy
    Miao X.
    Zhang Y.-H.
    Huang W.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2019, 27 (06): : 1270 - 1276
  • [14] Reflectance Confocal Microscopy, Optical Coherence Tomography, and Multiphoton Microscopy in Inflammatory Skin Disease Diagnosis
    Csuka, Ella A.
    Ward, Suzanne C.
    Ekelem, Chloe
    Csuka, David A.
    Ardigo, Marco
    Mesinkovska, Natasha A.
    LASERS IN SURGERY AND MEDICINE, 2021, 53 (06) : 776 - 797
  • [15] In Vivo Reflectance Confocal Microscopy
    Levine, Amanda
    Markowitz, Orit
    CUTIS, 2017, 99 (06): : 399 - 402
  • [16] In vivo imaging of a collision lesion by reflectance confocal microscopy
    Ramirez-Fort, Marigdalia K.
    Abramavicus, Alexander
    De Pace, Barbara
    Gareau, Dan S.
    Pellacani, Giovanni
    Gargantini, Giselle Rezze
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2012, 66 (04) : AB145 - AB145
  • [17] Segmentation of skin strata in reflectance confocal microscopy depth stacks
    Hames, Samuel C.
    Ardigo, Marco
    Soyer, H. Peter
    Bradley, Andrew P.
    Prow, Tarl W.
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [18] Anatomical Skin Segmentation in Reflectance Confocal Microscopy with Weak Labels
    Hames, Samuel C.
    Ardigo, Marco
    Soyer, H. Peter
    Bradley, Andrew P.
    Prow, Tarl W.
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 138 - 145
  • [19] Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy
    Zhuo, S. M.
    Chen, J. X.
    Jiang, X. S.
    Lu, K. C.
    Xie, S. S.
    LASER PHYSICS LETTERS, 2008, 5 (08) : 614 - 618
  • [20] Perfectly registered multiphoton and reflectance confocal video rate imaging of in vivo human skin
    Wang, Hequn
    Lee, Anthony M. D.
    Frehlick, Zack
    Lui, Harvey
    McLean, David I.
    Tang, Shuo
    Zeng, Haishan
    JOURNAL OF BIOPHOTONICS, 2013, 6 (04) : 305 - 309