INDUCED SUBSYSTEMS ASSOCIATED TO A CANTOR MINIMAL SYSTEM

被引:1
|
作者
Dahl, Heidi [1 ]
Molberg, Mats [2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Hedemark Univ Coll, N-2418 Elverum, Norway
关键词
Cantor minimal systems; AF-equivalence relations; etale equivalence relations; Bratteli diagrams;
D O I
10.4064/cm117-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, T) be a Cantor minimal system and let (R,T) be the associated etale equivalence relation (the orbit equivalence relation). We show that for an arbitrary Cantor minimal system (Y, S) there exists a closed subset Z of X such that (Y, S) is conjugate to the subsystem (Z, (T) over tilde), where (T) over tilde is the induced map on Z from T. We explore when we may choose Z to be a T-regular and/or a T-thin set, and we relate T-regularity of a set to R-etaleness. The latter concept plays an important role in the study of the orbit structure of minimal Z(d)-actions on the Cantor set by T. Giordans et al. [J. Amer. Math. Soc. 21 (2008)].
引用
收藏
页码:207 / 221
页数:15
相关论文
共 50 条
  • [11] Full groups of Cantor minimal systems
    Giordano, T
    Putnam, IF
    Skau, CF
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1999, 111 (1) : 285 - 320
  • [12] Full groups of Cantor minimal systems
    Thierry Giordano
    Ian F. Putnam
    Christian F. Skau
    [J]. Israel Journal of Mathematics, 1999, 111 : 285 - 320
  • [13] Algebraic topology for minimal Cantor sets
    Gambaudo, JM
    Martens, M
    [J]. ANNALES HENRI POINCARE, 2006, 7 (03): : 423 - 446
  • [14] NOT FINITELY BUT COUNTABLY HOPF-EQUIVALENT CLOPEN SETS IN A CANTOR MINIMAL SYSTEM
    Yuasa, Hisatoshi
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 33 (02) : 355 - 371
  • [15] Real coboundaries for minimal Cantor systems
    Ormes, NS
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2000, 195 (02) : 453 - 476
  • [16] Minimal Cantor systems and unimodal maps
    Bruin, H
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (3-4) : 305 - 318
  • [17] All minimal Cantor systems are slow
    Boronski, Jan P.
    Kupka, Jiri
    Oprocha, Piotr
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (06) : 937 - 944
  • [18] Algebraic Topology for Minimal Cantor Sets
    Jean-Marc Gambaudo
    Marco Martens
    [J]. Annales Henri Poincaré, 2006, 7 : 423 - 446
  • [19] Topological speedups for minimal Cantor systems
    Ash, Drew D.
    Ormes, Nicholas S.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2024, 261 (01) : 91 - 126
  • [20] Bratteli-Vershik models for cantor minimal systems associated to interval exchange transformations
    Gjerde, R
    Johansen, O
    [J]. MATHEMATICA SCANDINAVICA, 2002, 90 (01) : 87 - 100