Algebraic topology for minimal Cantor sets

被引:23
|
作者
Gambaudo, JM
Martens, M
机构
[1] Univ Chile, CNRS, UMI 2807, Ctr Modelamiento Matemat, Santiago, Chile
[2] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
来源
ANNALES HENRI POINCARE | 2006年 / 7卷 / 03期
关键词
D O I
10.1007/s00023-005-0255-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It will be shown that every minimal Cantor set can be obtained as a projective limit of directed graphs. This allows to study minimal Cantor sets by algebraic topological means. In particular, homology, homotopy and cohomology are related to the dynamics of minimal Cantor sets. These techniques allow to explicitly illustrate the variety of dynamical behavior possible in minimal Cantor sets.
引用
收藏
页码:423 / 446
页数:24
相关论文
共 50 条
  • [1] Algebraic Topology for Minimal Cantor Sets
    Jean-Marc Gambaudo
    Marco Martens
    [J]. Annales Henri Poincaré, 2006, 7 : 423 - 446
  • [2] On the topology of arithmetic sums of regular Cantor sets
    Moreira, CG
    Morales, EM
    Rivera-Letelier, J
    [J]. NONLINEARITY, 2000, 13 (06) : 2077 - 2087
  • [4] Quasi symmetrically minimal uniform Cantor sets
    Hu, Meidan
    Wen, Shengyou
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (06) : 515 - 521
  • [5] On the size of the algebraic difference of two random cantor sets
    Dekking, Michel
    Simon, Karoly
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (02) : 205 - 222
  • [6] THE TOPOLOGY OF REAL ALGEBRAIC-SETS
    KING, H
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 641 - 654
  • [7] Minimal Cantor Type Sets on Discrete Dynamical Systems
    Balibrea, Francisco
    [J]. NONLINEAR MAPS AND THEIR APPLICATIONS, 2015, : 183 - 191
  • [8] The Lebesgue measure of the algebraic difference of two random Cantor sets
    Mora, Peter
    Simon, Karoly
    Solomyak, Boris
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (01): : 131 - 149
  • [9] LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND ALGEBRAIC PROPERTIES OF CONTRACTION RATIOS
    Rao, Hui
    Ruan, Huo-Jun
    Wang, Yang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (03) : 1109 - 1126
  • [10] THE ALGEBRAIC DIFFERENCE OF TWO RANDOM CANTOR SETS: THE LARSSON FAMILY
    Dekking, Michel
    Simon, Karoly
    Szekely, Balazs
    [J]. ANNALS OF PROBABILITY, 2011, 39 (02): : 549 - 586