THE ALGEBRAIC DIFFERENCE OF TWO RANDOM CANTOR SETS: THE LARSSON FAMILY

被引:5
|
作者
Dekking, Michel [1 ]
Simon, Karoly [2 ]
Szekely, Balazs [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
[2] Tech Univ Budapest, Inst Math, H-1529 Budapest, Hungary
来源
ANNALS OF PROBABILITY | 2011年 / 39卷 / 02期
关键词
Random fractals; random iterated function systems; differences of Cantor sets; Palls conjecture; multitype branching processes;
D O I
10.1214/10-AOP558
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a family of random Cantor sets on the line and consider the question of whether the condition that the sum of the Hausdorff dimensions is larger than one implies the existence of interior points in the difference set of two independent copies. We give a new and complete proof that this is the case for the random Cantor sets introduced by Per Larsson.
引用
收藏
页码:549 / 586
页数:38
相关论文
共 50 条
  • [1] On the size of the algebraic difference of two random cantor sets
    Dekking, Michel
    Simon, Karoly
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (02) : 205 - 222
  • [2] The Lebesgue measure of the algebraic difference of two random Cantor sets
    Mora, Peter
    Simon, Karoly
    Solomyak, Boris
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (01): : 131 - 149
  • [3] When the algebraic difference of two central Cantor sets is an interval?
    Nowakowski, Piotr
    [J]. ANNALES FENNICI MATHEMATICI, 2023, 48 (01): : 163 - 185
  • [4] THE DIFFERENCE SET OF 2 RANDOM CANTOR SETS
    LARSSON, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (10): : 735 - 738
  • [5] Algebraic topology for minimal Cantor sets
    Gambaudo, JM
    Martens, M
    [J]. ANNALES HENRI POINCARE, 2006, 7 (03): : 423 - 446
  • [6] Algebraic Topology for Minimal Cantor Sets
    Jean-Marc Gambaudo
    Marco Martens
    [J]. Annales Henri Poincaré, 2006, 7 : 423 - 446
  • [7] Random Cantor Sets and Their Projections
    Dekking, Michel
    [J]. FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 269 - 284
  • [8] A FAMILY OF SMOOTH CANTOR SETS
    Garcia, Ignacio
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) : 21 - 45
  • [9] ON THE ARITHMETIC DIFFERENCE OF AFFINE CANTOR SETS
    Honary, B.
    Pourbarat, M.
    Velayati, M. R.
    [J]. JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2006, 4 (02) : 139 - 146
  • [10] ON THE ARITHMETIC DIFFERENCE OF MIDDLE CANTOR SETS
    Pourbarat, Mehdi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) : 4259 - 4278