FunCat functional inference with belief propagation and feature integration

被引:2
|
作者
Surmeli, Dimitrij [1 ,2 ]
Ratmann, Oliver [3 ]
Mewes, Hans-Werner [1 ,4 ]
Tetko, Igor V. [1 ]
机构
[1] Inst Bioinformat & Syst Biol, Helmholtz Zentrum Munchen German Res Ctr Environm, D-85764 Neuherberg, Germany
[2] BrainLAB, Feldkirchen, Germany
[3] Univ London Imperial Coll Sci Technol & Med, Ctr Biostat, London W2 1PG, England
[4] Tech Univ Munich, Life & Food Sci Ctr Weihenstephan, D-85354 Freising Weihenstephan, Germany
关键词
Automatic functional annotation; Belief propagation; Bacterial genomes; Heterogeneous data sources; Probabilistic graphical models;
D O I
10.1016/j.compbiolchem.2008.06.004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pairwise comparison of sequence data is intensively used for automated functional protein annotation, while graphical models emerge as promising candidates for an integration of various heterogeneous features. We designed a model, termed hRMN that integrates different genomic features and implemented a variant of belief propagation for functional annotation transfer. hRMN allows the assignment Of multiple functional categories while avoiding common problems in annotation transfer from heterogeneous datasets, such as an independency of the investigated datasets, We benchmarked this system with large-scale annotation transfer (based oil the MIPS FunCat ontology) to proteins of the prokaryotes Bacillus subtilis, Helicobacter pylori, Listeria monocytogenes, and Listeria innocua. hRMN consistently outperformed two competitors in annotation of four bacterial genomes. The developed code is available for download at http://mips.gsf.de/proj/bfab/bfab/hRMN.html. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:375 / 377
页数:3
相关论文
共 50 条
  • [31] Convergence Analysis of Distributed Inference with Vector-Valued Gaussian Belief Propagation
    Du, Jian
    Ma, Shaodan
    Wu, Yik-Chung
    Kar, Soummya
    Moura, Jose M. F.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [32] Message-Passing Algorithms for Inference and Optimization“Belief Propagation” and “Divide and Concur”
    Jonathan S. Yedidia
    [J]. Journal of Statistical Physics, 2011, 145 : 860 - 890
  • [33] Functional characterization of correct and incorrect feature integration
    Rodriguez-San Esteban, Pablo
    Chica, Ana B.
    Paz-Alonso, Pedro M.
    [J]. CEREBRAL CORTEX, 2023, 33 (04) : 1440 - 1451
  • [34] BELIEF, REASON, AND INFERENCE
    AUDI, R
    [J]. PHILOSOPHICAL TOPICS, 1986, 14 (01) : 27 - 65
  • [35] Belief Propagation
    Weiss, Yair
    Pearl, Judea
    [J]. COMMUNICATIONS OF THE ACM, 2010, 53 (10) : 94 - 94
  • [36] INFERENCE, BELIEF, AND UNDERSTANDING
    STROUD, B
    [J]. MIND, 1979, 88 (350) : 179 - 196
  • [37] Inference algorithm for finite-dimensional spin glasses: Belief propagation on the dual lattice
    Lage-Castellanos, Alejandro
    Mulet, Roberto
    Ricci-Tersenghi, Federico
    Rizzo, Tommaso
    [J]. PHYSICAL REVIEW E, 2011, 84 (04):
  • [38] SOLBP: Second-Order Loopy Belief Propagation for Inference in Uncertain Bayesian Networks
    Hougen, Conrad D.
    Kaplan, Lance M.
    Ivanovska, Magdalena
    Cerutti, Federico
    Mishra, Kumar Vijay
    Hero, Alfred O., III
    [J]. 2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [39] Fast Hierarchical Implementation of Sequential Tree-reweighted Belief Propagation for Probabilistic Inference
    Hurkat, Skand
    Choi, Jungwook
    Nurvitadhi, Eriko
    Martinez, Jose F.
    Rutenbar, Rob A.
    [J]. 2015 25TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, 2015,
  • [40] Probabilistic Inference-Based Robot Motion Planning via Gaussian Belief Propagation
    Bari, Salman
    Gabler, Volker
    Wollherr, Dirk
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08): : 5156 - 5163