Message-Passing Algorithms for Inference and Optimization“Belief Propagation” and “Divide and Concur”

被引:0
|
作者
Jonathan S. Yedidia
机构
[1] Disney Research Boston,
来源
关键词
Message-passing algorithms; Factor graphs; Belief propagation; Divide and concur; Difference-map; Optimization; Inference; Constraint satisfaction;
D O I
暂无
中图分类号
学科分类号
摘要
Message-passing algorithms can solve a wide variety of optimization, inference, and constraint satisfaction problems. The algorithms operate on factor graphs that visually represent and specify the structure of the problems. After describing some of their applications, I survey the family of belief propagation (BP) algorithms, beginning with a detailed description of the min-sum algorithm and its exactness on tree factor graphs, and then turning to a variety of more sophisticated BP algorithms, including free-energy based BP algorithms, “splitting” BP algorithms that generalize “tree-reweighted” BP, and the various BP algorithms that have been proposed to deal with problems with continuous variables.
引用
收藏
页码:860 / 890
页数:30
相关论文
共 50 条
  • [1] Message-Passing Algorithms for Inference and Optimization "Belief Propagation" and "Divide and Concur"
    Yedidia, Jonathan S.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (04) : 860 - 890
  • [2] A Hybrid Message-Passing Belief Propagation Algorithm
    Yang, Youfu
    Liu, Jianwei
    Zhang, Qishan
    Hong, Sheng
    [J]. PROCEEDINGS OF 2010 ASIA-PACIFIC YOUTH CONFERENCE ON COMMUNICATION, VOLS 1 AND 2, 2010, : 855 - 859
  • [3] Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference
    Hazan, Tamir
    Shashua, Amnon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (12) : 6294 - 6316
  • [4] Message-passing for inference and optimization of real variables on sparse graphs
    Wong, K. Y. Michael
    Yeung, C. H.
    Saad, David
    [J]. NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 754 - 763
  • [5] Approximate message-passing inference algorithm
    Jung, Kyomin
    Shah, Devavrat
    [J]. 2007 IEEE INFORMATION THEORY WORKSHOP, VOLS 1 AND 2, 2007, : 224 - +
  • [6] Message-Passing Algorithms for Channel Estimation and Decoding Using Approximate Inference
    Badiu, Mihai-A
    Kirkelund, Gunvor E.
    Manchon, Carles Navarro
    Riegler, Erwin
    Fleury, Bernard H.
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [7] INFERENCE OF GENE-REGULATORY NETWORKS USING MESSAGE-PASSING ALGORITHMS
    Shamaiah, Manohar
    Lee, Sang Hyun
    Vikalo, Haris
    [J]. 2010 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2010,
  • [8] Belief Propagation for Continuous State Spaces: Stochastic Message-Passing with Quantitative Guarantees
    Noorshams, Nima
    Wainwright, Martin J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2799 - 2835
  • [9] Quantized Stochastic Belief Propagation: Efficient Message-Passing for Continuous State Spaces
    Noorshams, Nima
    Wainwright, Martin J.
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [10] Message-Passing Algorithms: Reparameterizations and Splittings
    Ruozzi, Nicholas
    Tatikonda, Sekhar
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5860 - 5881