Sasaki-Einstein and paraSasaki-Einstein metrics from (κ, μ)-structures

被引:32
|
作者
Cappelletti-Montano, Beniamino [1 ]
Carriazo, Alfonso [2 ]
Martin-Molina, Veronica [2 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
[2] Univ Seville, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Sasakian; ParaSasakian; (kappa; mu)-spaces; eta-Einstein; Lorentzian-Sasakian; Tangent sphere bundle; RIEMANNIAN-MANIFOLDS; CONTACT; PARACONTACT;
D O I
10.1016/j.geomphys.2013.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every contact metric (kappa, mu)-space admits a canonical eta-Einstein Sasakian or eta-Einstein paraSasakian metric. An explicit expression for the curvature tensor fields of those metrics is given and we find the values of kappa and mu for which such metrics are Sasaki-Einstein and paraSasaki-Einstein. Conversely, we prove that, under some natural assumptions, a K-contact or K-paracontact manifold foliated by two mutually orthogonal, totally geodesic Legendre foliations admits a contact metric (kappa, mu)-structure. Furthermore, we apply the above results to the geometry of tangent sphere bundles and we discuss some geometric properties of (kappa, mu)-spaces related to the existence of Einstein-Weyl and Lorentzian-Sasaki-Einstein structures. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 36
页数:17
相关论文
共 50 条
  • [41] Localisation on Sasaki-Einstein manifolds from holomorphic functions on the cone
    Johannes Schmude
    [J]. Journal of High Energy Physics, 2015
  • [42] Brane-jet stabilities from Janus and Sasaki-Einstein
    Minwoo Suh
    [J]. Journal of High Energy Physics, 2023
  • [43] Cascading RG flows from new Sasaki-Einstein manifolds
    Herzog, CP
    Ejaz, QJ
    Klebanov, IR
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2005, (02): : 177 - 198
  • [44] Special Killing forms on toric Sasaki-Einstein manifolds
    Slesar, Vladimir
    Visinescu, Mihai
    Vilcu, Gabriel Eduard
    [J]. PHYSICA SCRIPTA, 2014, 89 (12)
  • [45] A Note On Smale Manifolds and Lorentzian Sasaki-Einstein Geometry
    Gomez, Ralph R.
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 151 - 158
  • [46] Reduction of type IIB on squashed Sasaki-Einstein manifolds
    Cassani, D.
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2011, 216 : 221 - 222
  • [47] Deformations of special Legendrian submanifolds in Sasaki-Einstein manifolds
    Moriyama, Takayuki
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) : 1111 - 1147
  • [48] CONSTRUCTING KAHLER-RICCI SOLITONS FROM SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Wang, Mu-Tao
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2011, 15 (01) : 33 - 52
  • [49] Complete integrability of geodesics in toric Sasaki-Einstein spaces
    Visinescu, Mihai
    [J]. XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [50] Type IIB supergravity on squashed Sasaki-Einstein manifolds
    Cassani, Davide
    Dall'Agata, Gianguido
    Faedo, Anton F.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):