Estimation of the killing rate parameter in a diffusion model

被引:0
|
作者
Horvat-Bokor, Roza [2 ]
Huzak, Miljenko [1 ]
Limic, Nedzad [1 ]
机构
[1] Univ Zagreb, Dept Math, HR-10000 Zagreb, Croatia
[2] OTP Bank Nyrt Ltd, Risk Management, H-1876 Budapest, Hungary
关键词
diffusion with killing; censored data; minimum chi(2)-estimation; random search;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parameter estimation problem for a diffusion with killing, starting at a point in an open and bounded set. The infinitesimal killing rate function depends on a control variable and parameters. Values of the control variable are known while parameters have unknown values which have to be estimated from data. The minimum of three times: the maximum observation time, the first exit time from the open set, and the killing time, is observed. Instead of the maximum likelihood estimation method we propose and use the minimum chi(2)-estimation method that is based on the conditional mean of the data observed before the maximum observation time is reached, and on the frequency of data that are equal to the maximum observation time. We prove that the estimator exists and is consistent and asymptotically normal. The method is illustrated by an example.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [41] Parameter estimation and bias correction for diffusion processes
    Tang, Cheng Yong
    Chen, Song Xi
    JOURNAL OF ECONOMETRICS, 2009, 149 (01) : 65 - 81
  • [42] On parameter estimation for switching ergodic diffusion processes
    Kutoyants, YA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 925 - 930
  • [43] Distributed Parameter State Estimation for the Gray-Scott Reaction-Diffusion Model
    Feketa, Petro
    Schaum, Alexander
    Meurer, Thomas
    SYSTEMS, 2021, 9 (04):
  • [44] Comparing Eight Parameter Estimation Methods for the Ratcliff Diffusion Model Using Free Software
    Alexandrowicz, Rainer W.
    Gula, Bartosz
    FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [45] Comparison of parameter estimation design criteria using a solute transport model with matrix diffusion
    Nordqvist, R
    GROUND WATER, 2000, 38 (06) : 827 - 835
  • [46] Mutual Information and Parameter Estimation in the Generalized Inverse Gaussian Diffusion Model of Cortical Neurons
    Sungkar M.
    Berger T.
    Levy W.B.
    IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2 (02): : 166 - 182
  • [47] Photopolymer holographic recording material parameter estimation using a nonlocal diffusion based model
    Lawrence, JR
    O'Neill, FT
    Sheridan, JT
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (07) : 3142 - 3148
  • [48] Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods
    Arnold, Nina R.
    Broeder, Arndt
    Bayen, Ute J.
    PSYCHOLOGICAL RESEARCH-PSYCHOLOGISCHE FORSCHUNG, 2015, 79 (05): : 882 - 898
  • [49] An inverse problem formulation for parameter estimation of a reaction–diffusion model of low grade gliomas
    Amir Gholami
    Andreas Mang
    George Biros
    Journal of Mathematical Biology, 2016, 72 : 409 - 433
  • [50] Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods
    Nina R. Arnold
    Arndt Bröder
    Ute J. Bayen
    Psychological Research, 2015, 79 : 882 - 898