Estimation of the killing rate parameter in a diffusion model

被引:0
|
作者
Horvat-Bokor, Roza [2 ]
Huzak, Miljenko [1 ]
Limic, Nedzad [1 ]
机构
[1] Univ Zagreb, Dept Math, HR-10000 Zagreb, Croatia
[2] OTP Bank Nyrt Ltd, Risk Management, H-1876 Budapest, Hungary
关键词
diffusion with killing; censored data; minimum chi(2)-estimation; random search;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parameter estimation problem for a diffusion with killing, starting at a point in an open and bounded set. The infinitesimal killing rate function depends on a control variable and parameters. Values of the control variable are known while parameters have unknown values which have to be estimated from data. The minimum of three times: the maximum observation time, the first exit time from the open set, and the killing time, is observed. Instead of the maximum likelihood estimation method we propose and use the minimum chi(2)-estimation method that is based on the conditional mean of the data observed before the maximum observation time is reached, and on the frequency of data that are equal to the maximum observation time. We prove that the estimator exists and is consistent and asymptotically normal. The method is illustrated by an example.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [31] A practical approach to parameter estimation applied to model predicting heart rate regulation
    Mette S. Olufsen
    Johnny T. Ottesen
    Journal of Mathematical Biology, 2013, 67 : 39 - 68
  • [32] CONTROLLING THE CONVERGENCE RATE TO HELP PARAMETER ESTIMATION IN A PLCA-BASED MODEL
    Fuentes, Benoit
    Badeau, Roland
    Richard, Gael
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 626 - 630
  • [33] THE INFLUENCE OF CONVERSION MODEL CHOICE FOR EROSION RATE ESTIMATION AND THE SENSITIVITY OF THE RESULTS TO CHANGES IN THE MODEL PARAMETER
    Suhartini, Nita
    INDONESIAN JOURNAL OF CHEMISTRY, 2006, 6 (02) : 199 - 204
  • [34] Parameter estimation for Fisher-Snedecor diffusion
    Avram, F.
    Leonenko, N. N.
    Suvak, N.
    STATISTICS, 2011, 45 (01) : 27 - 42
  • [35] ESTIMATION OF TREND PARAMETER OF A STOCHASTIC DIFFUSION EQUATION
    KULINICH, GL
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (02): : 393 - 397
  • [36] Simulation of conditioned diffusion and application to parameter estimation
    Delyon, Bernard
    Hu, Ying
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (11) : 1660 - 1675
  • [37] An Algorithm for Estimation an Anisotropic Diffusion Filter Parameter
    Kesareva, Ekaterina
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 682 - 685
  • [38] Diffusion Process with Evolution and its Parameter Estimation
    V. S. Koroliuk
    D. Koroliouk
    S. O. Dovgyi
    Cybernetics and Systems Analysis, 2020, 56 : 732 - 738
  • [39] A Multiresolution Method for Parameter Estimation of Diffusion Processes
    Kou, S. C.
    Olding, Benjamin P.
    Lysy, Martin
    Liu, Jun S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1558 - 1574
  • [40] Diffusion Process with Evolution and its Parameter Estimation
    Koroliuk, V. S.
    Koroliouk, D.
    Dovgyi, S. O.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2020, 56 (05) : 732 - 738