Estimation of the killing rate parameter in a diffusion model

被引:0
|
作者
Horvat-Bokor, Roza [2 ]
Huzak, Miljenko [1 ]
Limic, Nedzad [1 ]
机构
[1] Univ Zagreb, Dept Math, HR-10000 Zagreb, Croatia
[2] OTP Bank Nyrt Ltd, Risk Management, H-1876 Budapest, Hungary
关键词
diffusion with killing; censored data; minimum chi(2)-estimation; random search;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parameter estimation problem for a diffusion with killing, starting at a point in an open and bounded set. The infinitesimal killing rate function depends on a control variable and parameters. Values of the control variable are known while parameters have unknown values which have to be estimated from data. The minimum of three times: the maximum observation time, the first exit time from the open set, and the killing time, is observed. Instead of the maximum likelihood estimation method we propose and use the minimum chi(2)-estimation method that is based on the conditional mean of the data observed before the maximum observation time is reached, and on the frequency of data that are equal to the maximum observation time. We prove that the estimator exists and is consistent and asymptotically normal. The method is illustrated by an example.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [1] Rate data and material model parameter estimation
    Fossum, AF
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1998, 120 (01): : 7 - 12
  • [2] Two-Parameter Model for SEE Rate Estimation
    Smolin, Anatoly A.
    Sogoyan, Armen, V
    Chumakov, Alexander, I
    2018 18TH EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS), 2018, : 186 - 189
  • [3] ESTIMATION OF A PARAMETER OF A DIFFUSION PROCESS
    KUTOYANTS, YA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1978, 23 (03) : 641 - 649
  • [4] Consistent estimation of drift parameter in diffusion model with misspecified volatility function
    Jeong, Minsoo
    ECONOMICS LETTERS, 2022, 211
  • [5] The Inverse Moment Estimation of Parameter of The Third Kind of Sales Diffusion Model
    Liang Shu
    Xu Xiaoling
    Gu Beiqing
    CONTEMPORARY INNOVATION AND DEVELOPMENT IN STATISTICAL SCIENCE, 2012, : 186 - 190
  • [6] Parameter estimation in a nonlinear two-dimensional population diffusion model
    Ferdinand, RR
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (1-2) : 57 - 67
  • [7] Parameter estimation of Gaussian gray diffusion model of static image spot
    Wang, Haiyong
    Zhou, Wenrui
    Lin, Haoyu
    Wang, Xinlong
    Guangxue Xuebao/Acta Optica Sinica, 2012, 32 (03):
  • [8] REACTION RATE PARAMETER ESTIMATION
    PRIESTLY, AJ
    WEBSTER, JWC
    AGNEW, JB
    BRITISH CHEMICAL ENGINEERING, 1971, 16 (2-3): : 231 - &
  • [9] Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
    Coelho, Santiago
    Pozo, Jose M.
    Jespersen, Sune N.
    Jones, Derek K.
    Frangi, Alejandro F.
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (01) : 395 - 410
  • [10] Phase transition on the convergence rate of parameter estimation under an Ornstein–Uhlenbeck diffusion on a tree
    Cécile Ané
    Lam Si Tung Ho
    Sebastien Roch
    Journal of Mathematical Biology, 2017, 74 : 355 - 385