Assessing confidence in inferring reactor type and fuel burnup: A Markov chain Monte Carlo approach

被引:4
|
作者
Burr, TL
Charlton, WS
Nakhleh, CW
机构
[1] Los Alamos Natl Lab, Stat Grp, Los Alamos, NM 87545 USA
[2] Texas A&M Univ, College Stn, TX USA
[3] Los Alamos Natl Lab, Thermonucl Applicat Grp, Los Alamos, NM 87545 USA
关键词
inverse problem; maximum likelihood; Markov chain Monte Carlo; computer modeling error; spent fuel; safeguards;
D O I
10.1016/j.nima.2005.09.041
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A technology to verify operator declarations of reactor type and fuel burnup has been introduced. The approach uses reactor modeling (the "forward model") to predict well-chosen isotope ratios as a function of reactor type and burnup. Mass spectrometry measurements of these ratios are then used to infer reactor type and burnup, (via a maximum likelihood solution to "the inverse problem"). We extend the previous maximum likelihood solution to this inverse problem by using Markov Chain Monte Carlo to simulate observations from the posterior distribution for reactor type and burnup. This provides an alternate estimation strategy, an estimate of the confidence in the inferred reactor type and burnup, and improves prediction performance. We also investigate the impact of increased error variance as a step toward including the effect of computer-code uncertainty. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:426 / 434
页数:9
相关论文
共 50 条
  • [1] Markov Chain Monte Carlo confidence intervals
    Atchade, Yves F.
    [J]. BERNOULLI, 2016, 22 (03) : 1808 - 1838
  • [2] A Markov chain Monte Carlo approach to stereovision
    Sénégas, J
    [J]. COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 97 - 111
  • [3] Assessing the accuracy of record linkages with Markov chain based Monte Carlo simulation approach
    Haque, Shovanur
    Mengersen, Kerrie
    Stern, Steven
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [4] Assessing the accuracy of record linkages with Markov chain based Monte Carlo simulation approach
    Shovanur Haque
    Kerrie Mengersen
    Steven Stern
    [J]. Journal of Big Data, 8
  • [5] A Monte Carlo study on burnup treatment in sodium-cooled reactor with Th fuel
    Korkmaz, M. E.
    Arslan, N. K.
    [J]. KERNTECHNIK, 2021, 86 (04) : 302 - 311
  • [6] An optimum approach to Monte Carlo burnup
    Haeck, W.
    Verboomen, B.
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2007, 156 (02) : 180 - 196
  • [7] Feature correspondence: A Markov chain Monte Carlo approach
    Dellaert, F
    Seitz, SM
    Thrun, S
    Thorpe, C
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 852 - 858
  • [8] Estimating demands with a Markov chain Monte Carlo approach
    Qin, T.
    Boccelli, D. L.
    [J]. 12TH INTERNATIONAL CONFERENCE ON COMPUTING AND CONTROL FOR THE WATER INDUSTRY, CCWI2013, 2014, 70 : 1386 - 1390
  • [9] A geometric approach to transdimensional Markov chain Monte Carlo
    Petris, G
    Tardella, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 469 - 482
  • [10] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298