Feature correspondence: A Markov chain Monte Carlo approach

被引:0
|
作者
Dellaert, F [1 ]
Seitz, SM [1 ]
Thrun, S [1 ]
Thorpe, C [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When trying to recover 3D structure from a set of images, the most difficult problem is establishing the correspondence between the measurements. Most existing approaches assume that features can be tracked across frames, whereas methods that exploit rigidity constraints to facilitate matching do so only under restricted camera motion. In this paper we propose a Bayesian approach that avoids the brittleness associated with singling out one "best" correspondence, and instead consider the distribution over all possible correspondences. We treat both a fully Bayesian approach that yields a posterior distribution, and a MAP approach that makes use of EM to maximize this posterior. We show how Markov chain Monte Carlo methods can be used to implement these techniques in practice, and present experimental results on real data.
引用
收藏
页码:852 / 858
页数:7
相关论文
共 50 条
  • [1] Feature selection by Markov chain Monte Carlo sampling - A Bayesian approach
    Egmont-Petersen, M
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 1034 - 1042
  • [2] Alignment and correspondence using Markov Chain Monte Carlo
    Moss, S
    Hancock, ER
    [J]. 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 928 - 931
  • [3] A Markov chain Monte Carlo approach to stereovision
    Sénégas, J
    [J]. COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 97 - 111
  • [4] Estimating demands with a Markov chain Monte Carlo approach
    Qin, T.
    Boccelli, D. L.
    [J]. 12TH INTERNATIONAL CONFERENCE ON COMPUTING AND CONTROL FOR THE WATER INDUSTRY, CCWI2013, 2014, 70 : 1386 - 1390
  • [5] A geometric approach to transdimensional Markov chain Monte Carlo
    Petris, G
    Tardella, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 469 - 482
  • [6] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [7] A Markov Chain Monte Carlo Approach for Source Detection in Networks
    Zhang, Le
    Jin, Tianyuan
    Xu, Tong
    Chang, Biao
    Wang, Zhefeng
    Chen, Enhong
    [J]. SOCIAL MEDIA PROCESSING, SMP 2017, 2017, 774 : 77 - 88
  • [8] A Markov chain Monte Carlo approach to closing the loop in SLAM
    Kaess, M
    Dellaert, F
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 643 - 648
  • [9] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [10] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980