Assessing confidence in inferring reactor type and fuel burnup: A Markov chain Monte Carlo approach

被引:4
|
作者
Burr, TL
Charlton, WS
Nakhleh, CW
机构
[1] Los Alamos Natl Lab, Stat Grp, Los Alamos, NM 87545 USA
[2] Texas A&M Univ, College Stn, TX USA
[3] Los Alamos Natl Lab, Thermonucl Applicat Grp, Los Alamos, NM 87545 USA
关键词
inverse problem; maximum likelihood; Markov chain Monte Carlo; computer modeling error; spent fuel; safeguards;
D O I
10.1016/j.nima.2005.09.041
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A technology to verify operator declarations of reactor type and fuel burnup has been introduced. The approach uses reactor modeling (the "forward model") to predict well-chosen isotope ratios as a function of reactor type and burnup. Mass spectrometry measurements of these ratios are then used to infer reactor type and burnup, (via a maximum likelihood solution to "the inverse problem"). We extend the previous maximum likelihood solution to this inverse problem by using Markov Chain Monte Carlo to simulate observations from the posterior distribution for reactor type and burnup. This provides an alternate estimation strategy, an estimate of the confidence in the inferred reactor type and burnup, and improves prediction performance. We also investigate the impact of increased error variance as a step toward including the effect of computer-code uncertainty. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:426 / 434
页数:9
相关论文
共 50 条
  • [31] A Markov Chain Monte Carlo approach for the estimation of photovoltaic system parameters
    Laevens, Benjamin P. M.
    Pijpers, Frank P.
    Boonstra, Harm Jan
    Sark, Wilfried G. J. H. M.
    ten Bosch, Olav
    [J]. SOLAR ENERGY, 2023, 265
  • [32] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    MARY KATHRYN COWLES
    JEFFREY S. ROSENTHAL
    [J]. Statistics and Computing, 1998, 8 : 115 - 124
  • [33] Distinguishing migration from isolation: A Markov chain Monte Carlo approach
    Nielsen, R
    Wakeley, J
    [J]. GENETICS, 2001, 158 (02) : 885 - 896
  • [34] A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
    Edwards, Michael C.
    [J]. PSYCHOMETRIKA, 2010, 75 (03) : 474 - 497
  • [35] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    Cowles, MK
    Rosenthal, JS
    [J]. STATISTICS AND COMPUTING, 1998, 8 (02) : 115 - 124
  • [36] A Markov Chain Monte Carlo Approach to Nonlinear Parametric System Identification
    Bai, Er-Wei
    Ishii, Hideaki
    Tempo, Roberto
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2542 - 2546
  • [37] Feature selection by Markov chain Monte Carlo sampling - A Bayesian approach
    Egmont-Petersen, M
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 1034 - 1042
  • [38] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    [J]. BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [39] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    [J]. BERNOULLI, 2005, 11 (05) : 815 - 828
  • [40] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45