On Vosperian and Superconnected Vertex-Transitive Digraphs

被引:2
|
作者
Hamidoune, Y. O. [1 ]
Llado, A. [2 ]
Lopez, S. C. [3 ]
机构
[1] Univ Paris 05, F-75005 Paris, France
[2] Univ Politecn Cataluna, Dept Matemat Apl 4, ES-08034 Barcelona, Spain
[3] Univ Politecn Cataluna, Dept Matemat Apl 4, Castelldefels 08860, Spain
关键词
Arc-transitive; Cayley digraph; Isoperimetric connectivity; Superconnected; Vosperian; GRAPHS; CONNECTIVITY;
D O I
10.1007/s00373-011-1104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structure of a digraph having a transitive automorphism group where every cutset of minimal cardinality consists of all successors or all predecessors of some vertex. We give a complete characterization of vosperian arc-transitive digraphs. It states that an arc-transitive strongly connected digraph is vosperian if and only if it is irreducible. In particular, this is the case if the degree is coprime with the order of the digraph. We give also a complete characterization of vosperian Cayley digraphs and a complete characterization of irreducible superconnected Cayley digraphs. These two last characterizations extend the corresponding ones in Abelian Cayley digraphs and the ones in the undirected case.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [41] LONG CYCLES IN VERTEX-TRANSITIVE GRAPHS
    BABAI, L
    JOURNAL OF GRAPH THEORY, 1979, 3 (03) : 301 - 304
  • [42] DISTANCE DEGREES OF VERTEX-TRANSITIVE GRAPHS
    HILANO, T
    GRAPHS AND COMBINATORICS, 1989, 5 (03) : 223 - 228
  • [43] ON ISOMORPHISMS OF VERTEX-TRANSITIVE CUBIC GRAPHS
    Fi, Jing Chen
    Li, Cai Heng
    Liu, Wei Jun
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (03) : 341 - 349
  • [44] Classification of cubic vertex-transitive tricirculants
    Potocnik, Primoz
    Toledo, Micael
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (01) : 1 - 31
  • [45] On orders of automorphisms of vertex-transitive graphs
    Potocnik, Primoz
    Toledo, Micael
    Verret, Gabriel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 166 : 123 - 153
  • [46] ON THE DECOMPOSITION OF VERTEX-TRANSITIVE GRAPHS INTO MULTICYCLES
    LEIGHTON, FT
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1983, 88 (06): : 403 - 410
  • [47] Vertex-transitive Diameter Two Graphs
    Jin, Wei
    Tan, Li
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (01): : 209 - 222
  • [48] Perfect codes in vertex-transitive graphs
    Wang, Yuting
    Zhang, Junyang
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 196
  • [49] STRUCTURE OF FINITE VERTEX-TRANSITIVE GRAPHS
    GREEN, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A37 - A37
  • [50] STRUCTURE OF INFINITE VERTEX-TRANSITIVE GRAPHS
    JUNG, HA
    WATKINS, ME
    DISCRETE MATHEMATICS, 1977, 18 (01) : 45 - 53