On Vosperian and Superconnected Vertex-Transitive Digraphs

被引:2
|
作者
Hamidoune, Y. O. [1 ]
Llado, A. [2 ]
Lopez, S. C. [3 ]
机构
[1] Univ Paris 05, F-75005 Paris, France
[2] Univ Politecn Cataluna, Dept Matemat Apl 4, ES-08034 Barcelona, Spain
[3] Univ Politecn Cataluna, Dept Matemat Apl 4, Castelldefels 08860, Spain
关键词
Arc-transitive; Cayley digraph; Isoperimetric connectivity; Superconnected; Vosperian; GRAPHS; CONNECTIVITY;
D O I
10.1007/s00373-011-1104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structure of a digraph having a transitive automorphism group where every cutset of minimal cardinality consists of all successors or all predecessors of some vertex. We give a complete characterization of vosperian arc-transitive digraphs. It states that an arc-transitive strongly connected digraph is vosperian if and only if it is irreducible. In particular, this is the case if the degree is coprime with the order of the digraph. We give also a complete characterization of vosperian Cayley digraphs and a complete characterization of irreducible superconnected Cayley digraphs. These two last characterizations extend the corresponding ones in Abelian Cayley digraphs and the ones in the undirected case.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [21] A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS
    ALSPACH, B
    PARSONS, TD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02): : 307 - 318
  • [22] On the classification of vertex-transitive structures
    Clemens, John
    Coskey, Samuel
    Potter, Stephanie
    ARCHIVE FOR MATHEMATICAL LOGIC, 2019, 58 (5-6) : 565 - 574
  • [23] Presentations for vertex-transitive graphs
    Agelos Georgakopoulos
    Alex Wendland
    Journal of Algebraic Combinatorics, 2022, 55 : 795 - 826
  • [24] STRUCTURE OF VERTEX-TRANSITIVE GRAPHS
    GREEN, AC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (01) : 1 - 11
  • [25] VERTEX-TRANSITIVE MAPS ON A TORUS
    Such, O.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2011, 80 (01): : 1 - 30
  • [26] On Isomorphisms of Vertex-transitive Graphs
    Chen, Jing
    Xia, Binzhou
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [27] The edge-transitive polytopes that are not vertex-transitive*
    Goering, Frank
    Winter, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (02)
  • [28] On the classification of vertex-transitive structures
    John Clemens
    Samuel Coskey
    Stephanie Potter
    Archive for Mathematical Logic, 2019, 58 : 565 - 574
  • [29] Presentations for vertex-transitive graphs
    Georgakopoulos, Agelos
    Wendland, Alex
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 795 - 826
  • [30] Classification of Vertex-Transitive Zonotopes
    Martin Winter
    Discrete & Computational Geometry, 2021, 66 : 1446 - 1462