Low-Discrepancy Blue Noise Sampling

被引:31
|
作者
Ahmed, Abdalla G. M. [1 ]
Perrier, Helene [2 ]
Coeurjolly, David [2 ]
Ostromoukhov, Victor [2 ]
Guo, Jianwei [3 ]
Yan, Dong-Ming [3 ]
Huang, Hui [4 ,5 ]
Deussen, Oliver [1 ,5 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Univ Lyon, Lyon, France
[3] Chinese Acad Sci, Inst Automat, NLPR, Beijing, Peoples R China
[4] Shenzhen Univ, Shenzhen, Peoples R China
[5] SIAT, Shenzhen, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2016年 / 35卷 / 06期
基金
中国国家自然科学基金;
关键词
Blue Noise; Low Discrepancy; Sampling; Monte Carlo; quasi-Monte Carlo; WANG TILES; IMAGE;
D O I
10.1145/2980179.2980218
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel technique that produces two-dimensional low-discrepancy (LD) blue noise point sets for sampling. Using one-dimensional binary van der Corput sequences, we construct two-dimensional LD point sets, and rearrange them to match a target spectral profile while preserving their low discrepancy. We store the rearrangement information in a compact lookup table that can be used to produce arbitrarily large point sets. We evaluate our technique and compare it to the state-of-the-art sampling approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Combinatorics and algorithms on low-discrepancy roundings of a real sequence
    Sadakane, K
    Takki-Chebihi, N
    Tokuyama, T
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 166 - 177
  • [42] Comparison of randomization techniques for low-discrepancy sequences in finance
    Tamura, Tsutomu
    [J]. ASIA-PACIFIC FINANCIAL MARKETS, 2005, 12 (03) : 227 - 244
  • [43] Combinatorics and algorithms for low-discrepancy roundings of a real sequence
    Sadakane, K
    Takki-Chebihi, N
    Tokuyama, T
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 331 (01) : 23 - 36
  • [44] Incremental low-discrepancy lattice methods for motion planning
    Lindemann, SR
    LaValle, SM
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 2920 - 2927
  • [45] Improved Particle Swarm Optimization with Low-Discrepancy Sequences
    Pant, Millie
    Thangaraj, Radha
    Grosan, Crina
    Abraham, Ajith
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3011 - +
  • [46] Fast generation of randomized low-discrepancy point sets
    Friedel, I
    Keller, A
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 257 - 273
  • [47] The acceptance-rejection method for low-discrepancy sequences
    Nguyen, Nguyet
    Okten, Giray
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2016, 22 (02): : 133 - 148
  • [48] Computing volume properties using low-discrepancy sequences
    Davies, TJG
    Martin, RR
    Bowyer, A
    [J]. GEOMETRIC MODELLING, 2001, 14 : 55 - 72
  • [49] On the Use of Low-discrepancy Sequences in the Training of Neural Networks
    Atanassov, E.
    Gurov, T.
    Georgiev, D.
    Ivanovska, S.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 421 - 430
  • [50] Application of Deterministic Low-Discrepancy Sequences in Global Optimization
    Sergei Kucherenko
    Yury Sytsko
    [J]. Computational Optimization and Applications, 2005, 30 : 297 - 318