Low-Discrepancy Blue Noise Sampling

被引:31
|
作者
Ahmed, Abdalla G. M. [1 ]
Perrier, Helene [2 ]
Coeurjolly, David [2 ]
Ostromoukhov, Victor [2 ]
Guo, Jianwei [3 ]
Yan, Dong-Ming [3 ]
Huang, Hui [4 ,5 ]
Deussen, Oliver [1 ,5 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Univ Lyon, Lyon, France
[3] Chinese Acad Sci, Inst Automat, NLPR, Beijing, Peoples R China
[4] Shenzhen Univ, Shenzhen, Peoples R China
[5] SIAT, Shenzhen, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2016年 / 35卷 / 06期
基金
中国国家自然科学基金;
关键词
Blue Noise; Low Discrepancy; Sampling; Monte Carlo; quasi-Monte Carlo; WANG TILES; IMAGE;
D O I
10.1145/2980179.2980218
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel technique that produces two-dimensional low-discrepancy (LD) blue noise point sets for sampling. Using one-dimensional binary van der Corput sequences, we construct two-dimensional LD point sets, and rearrange them to match a target spectral profile while preserving their low discrepancy. We store the rearrangement information in a compact lookup table that can be used to produce arbitrarily large point sets. We evaluate our technique and compare it to the state-of-the-art sampling approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Genetic algorithms using low-discrepancy sequences
    Kimura, Shuhei
    Matsumura, Koki
    [J]. GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 1341 - 1346
  • [32] Low-Discrepancy Curves and Efficient Coverage of Space
    Ramamoorthy, Subramanian
    Rajagopal, Ram
    Ruan, Qing
    Wenzel, Lothar
    [J]. ALGORITHMIC FOUNDATION OF ROBOTICS VII, 2008, 47 : 203 - +
  • [33] Structural reliability assessment based on low-discrepancy adaptive importance sampling and artificial neural network
    Zhao, Hailong
    Yue, Zhufeng
    Liu, Yongshou
    Liu, Wei
    Gao, Zongzhan
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2017, 231 (03) : 497 - 509
  • [34] Quasirandom geometric networks from low-discrepancy sequences
    Estrada, Ernesto
    [J]. PHYSICAL REVIEW E, 2017, 96 (02)
  • [35] Transforming low-discrepancy sequences from a cube to a simplex
    Pillards, T
    Cools, R
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 174 (01) : 29 - 42
  • [36] Low-discrepancy sequences: Atanassov's methods revisited
    Faure, Henri
    Lemieux, Christiane
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 132 : 236 - 256
  • [37] Spatial low-discrepancy sequences, spherical cone discrepancy, and applications in financial modeling
    Brauchart, Johann S.
    Dick, Josef
    Fang, Lou
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 286 : 28 - 53
  • [38] Neural network learning using low-discrepancy sequence
    Jordanov, I
    Brown, R
    [J]. ADVANCED TOPICS IN ARTIFICIAL INTELLIGENCE, 1999, 1747 : 255 - 267
  • [39] A nonlocal functional promoting low-discrepancy point sets
    Steinerberger, Stefan
    [J]. JOURNAL OF COMPLEXITY, 2019, 54
  • [40] Practical Algorithms for Low-Discrepancy 2-Colorings
    Kliemann, Lasse
    [J]. PANORAMA OF DISCREPANCY THEORY, 2014, 2107 : 459 - 484