Effect of irradiation on Gallium Arsenide solar cells with multi quantum well structures

被引:0
|
作者
Maximenko, S. I. [1 ]
Lumb, M. P. [2 ]
Hoheisel, R. [2 ]
Gonzalez, M. [3 ]
Scheiman, D. A. [1 ]
Messenger, S. R. [4 ]
Tibbits, T. N. D. [5 ]
Imaizumi, M. [6 ]
Ohshima, T. [7 ]
Sato, S. -I. [7 ]
Jenkins, P. P. [1 ]
Walters, R. J. [1 ]
机构
[1] Naval Res Lab, Washington, DC 20375 USA
[2] George Washington Univ, Washington, DC 20052 USA
[3] Sotera Def Solut, Annapolis Jct, MD 20701 USA
[4] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
[5] QuantaSol Ltd, Kingston Upon Thames KT1 3GZ, Surrey, England
[6] Japan Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki 3058505, Japan
[7] Japan Atom Energy Agcy JAEA, Takasaki, Gunma 3701292, Japan
关键词
Irradiation; SEM; EBIC; Quantum Wells; GaAs; simulation; C-V; BEAM-INDUCED CURRENT; CARRIER REMOVAL; SEMICONDUCTORS; RADIATION; DEFECTS; SPACE; GAAS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a complex analysis of the radiation response of GaAs solar cells with multi quantum wells (MQW) incorporated in the i-region of the device is presented. Electronic transport properties of the MQW i-region were assessed experimentally by the electron beam induced current (EBIC) technique. A 2-D EBIC diffusion model was applied to simulate EBIC line scans across device structure for different radiation doses. The results are interpreted using numerical modeling of the electrical field distribution at different radiation levels. Type conversion from n-to p-type was found in MQW i-region at displacement damage dose as low as low as similar to 9.88E9 MeV/g. This is supported by experimental and simulated EBIC and electric field distribution results.
引用
收藏
页码:2144 / 2148
页数:5
相关论文
共 50 条
  • [41] Quantum well solar cells
    Barnham, KWJ
    Ballard, I
    Connolly, JP
    Ekins-Daukes, NJ
    Kluftinger, BG
    Nelson, J
    Rohr, C
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2): : 27 - 36
  • [42] Quantum well solar cells
    Barnham, K
    Ballard, I
    Barnes, J
    Connolly, J
    Griffin, P
    Kluftinger, B
    Nelson, J
    Tsui, E
    Zachariou, A
    APPLIED SURFACE SCIENCE, 1997, 113 : 722 - 733
  • [43] Epitaxial Reflector Structures for High Efficiency Quantum Well Solar Cells
    Weiser, Roger E.
    Polly, Stephen J.
    Sood, Ashok K.
    Hubbard, Seth M.
    Montgomery, Kyle H.
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 2642 - 2645
  • [44] Wide-Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells
    Li, Zijia
    Kim, Tae Hak
    Han, Sung Yong
    Yun, Yeo-Jun
    Jeong, Seonghwa
    Jo, Bonghyun
    Ok, Song Ah
    Yim, Woongbin
    Lee, Seung Hu
    Kim, Kangho
    Moon, Sunghyun
    Park, Ji-Yong
    Ahn, Tae Kyu
    Shin, Hyunjung
    Lee, Jaejin
    Park, Hui Joon
    ADVANCED ENERGY MATERIALS, 2020, 10 (06)
  • [45] Geometrical Optimization of Gallium Arsenide (GaAs) nanostructure based Solar Cells
    Singh, Sadhna
    Mal, Indranil
    Samajdar, Dip Prakash
    Dutta, Koushik
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 686 - 691
  • [46] Overview of the Current State of Gallium Arsenide-Based Solar Cells
    Pap, Nikola
    Dallaev, Rashid
    Talu, Stefan
    Kagtyl, Jaroslav
    MATERIALS, 2021, 14 (11)
  • [47] Cost trade between multijunction, gallium arsenide and silicon solar cells
    Gaddy, EM
    PROGRESS IN PHOTOVOLTAICS, 1996, 4 (02): : 155 - 161
  • [48] Thin Gallium Arsenide Solar Cells With Maskless Back Surface Reflectors
    D'Rozario, Julia R.
    Polly, Stephen J.
    Nelson, George T.
    Hubbard, Seth M.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2020, 10 (06): : 1681 - 1688
  • [49] THIN-FILM GALLIUM-ARSENIDE SOLAR-CELLS
    CHU, SS
    CHU, TL
    ZHANG, FS
    CHEN, WJ
    WANG, QH
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) : C87 - C87
  • [50] Effects of copper diffusion in gallium arsenide solar cells for space applications
    van Leest, R. H.
    Bauhuis, G. J.
    Mulder, P.
    van der Heijden, R.
    Bongers, E.
    Vlieg, E.
    Schermer, J. J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 140 : 45 - 53