Effect of irradiation on Gallium Arsenide solar cells with multi quantum well structures

被引:0
|
作者
Maximenko, S. I. [1 ]
Lumb, M. P. [2 ]
Hoheisel, R. [2 ]
Gonzalez, M. [3 ]
Scheiman, D. A. [1 ]
Messenger, S. R. [4 ]
Tibbits, T. N. D. [5 ]
Imaizumi, M. [6 ]
Ohshima, T. [7 ]
Sato, S. -I. [7 ]
Jenkins, P. P. [1 ]
Walters, R. J. [1 ]
机构
[1] Naval Res Lab, Washington, DC 20375 USA
[2] George Washington Univ, Washington, DC 20052 USA
[3] Sotera Def Solut, Annapolis Jct, MD 20701 USA
[4] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
[5] QuantaSol Ltd, Kingston Upon Thames KT1 3GZ, Surrey, England
[6] Japan Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki 3058505, Japan
[7] Japan Atom Energy Agcy JAEA, Takasaki, Gunma 3701292, Japan
关键词
Irradiation; SEM; EBIC; Quantum Wells; GaAs; simulation; C-V; BEAM-INDUCED CURRENT; CARRIER REMOVAL; SEMICONDUCTORS; RADIATION; DEFECTS; SPACE; GAAS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a complex analysis of the radiation response of GaAs solar cells with multi quantum wells (MQW) incorporated in the i-region of the device is presented. Electronic transport properties of the MQW i-region were assessed experimentally by the electron beam induced current (EBIC) technique. A 2-D EBIC diffusion model was applied to simulate EBIC line scans across device structure for different radiation doses. The results are interpreted using numerical modeling of the electrical field distribution at different radiation levels. Type conversion from n-to p-type was found in MQW i-region at displacement damage dose as low as low as similar to 9.88E9 MeV/g. This is supported by experimental and simulated EBIC and electric field distribution results.
引用
收藏
页码:2144 / 2148
页数:5
相关论文
共 50 条
  • [31] Precision comparison of the quantum Hall effect in graphene and gallium arsenide
    Janssen, T. J. B. M.
    Williams, J. M.
    Fletcher, N. E.
    Goebel, R.
    Tzalenchuk, A.
    Yakimova, R.
    Lara-Avila, S.
    Kubatkin, S.
    Fal'ko, V. I.
    METROLOGIA, 2012, 49 (03) : 294 - 306
  • [32] The magnetoelectric effect in structures based on metallized gallium arsenide substrates
    Laletin, V. M.
    Stognii, A. I.
    Novitskii, N. N.
    Poddubnaya, N. N.
    TECHNICAL PHYSICS LETTERS, 2014, 40 (11) : 969 - 971
  • [33] Study on multi-quantum barriers for use in quantum well solar cells
    Wu, LZ
    Tian, W
    Jiang, XT
    FIFTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS, 2004, 5774 : 607 - 610
  • [34] INDIUM TIN OXIDE GALLIUM-ARSENIDE SOLAR-CELLS
    NASEEM, S
    COUTTS, TJ
    JOURNAL OF APPLIED PHYSICS, 1985, 58 (11) : 4463 - 4464
  • [35] Wide band Metamaterial Absorber for Gallium Arsenide GaAs solar cells
    John, Victor Du H.
    Antony, Blessy
    Teja, Neelapala Nava
    Gandikota, Vinod
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 578 - 580
  • [36] Photovoltaic solar cells based on graphene/gallium arsenide Schottky junction
    Ansari, Zeeshan Alam
    Singh, Thokchom Jayenta
    Islam, Sk Masiul
    Singh, Sumitra
    Mahala, Pramila
    Khan, Afzal
    Singh, Khomdram Jolson
    OPTIK, 2019, 182 : 500 - 506
  • [37] THIN-FILM GALLIUM-ARSENIDE SOLAR-CELLS
    CHU, SS
    CHU, TL
    WANG, CP
    YANG, HT
    MONROE, SE
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (08) : C317 - C318
  • [38] Graphene/gallium arsenide-based Schottky junction solar cells
    Jie, Wenjing
    Zheng, Fengang
    Hao, Jianhua
    APPLIED PHYSICS LETTERS, 2013, 103 (23)
  • [39] GALLIUM-ARSENIDE SOLAR-CELLS FOR USE WITH CONCENTRATED SUNLIGHT
    BURGESS, JW
    DAVIS, R
    DEBNEY, BT
    NICKLIN, R
    IEE JOURNAL ON SOLID-STATE AND ELECTRON DEVICES, 1978, 2 : S69 - S73
  • [40] Quantum well solar cells
    Barnham, Keith
    Ballard, Ian
    Barnes, Jenny
    Connolly, James
    Griffin, Paul
    Kluftinger, Benjamin
    Nelson, Jenny
    Tsui, Ernest
    Zachariou, Alexander
    Applied Surface Science, 1997, 113-114 : 722 - 733