A two-soliton solution of cubic Schrodinger equation

被引:1
|
作者
Yan, JR
Chou, GH
Wang, XG
机构
来源
CHINESE PHYSICS LETTERS | 1996年 / 13卷 / 01期
关键词
D O I
10.1088/0256-307X/13/1/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An exact two-soliton solution of cubic Schrodinger equation is derived by using the inverse scattering method, where the transmission coefficient has one pole of second order instead of two simple poles. This solution describes such a process that two infiniteIy separated solitons approach and then pass through each other and keep straight on infinitely.
引用
收藏
页码:17 / 19
页数:3
相关论文
共 50 条
  • [31] Two-Soliton Solutions to the Three-Dimensional Gravitational Hartree Equation
    Krieger, Joachim
    Martel, Yvan
    Raphael, Pierre
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) : 1501 - 1550
  • [32] A meshfree method for the solution of two-dimensional cubic nonlinear Schrodinger equation
    Abbasbandy, S.
    Ghehsareh, H. Roohani
    Hashim, I.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (06) : 885 - 898
  • [33] On the structure of the two-soliton interaction for the Korteweg-de Vries equation
    Kovalyov, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 431 - 438
  • [34] On the double-pole and two-soliton solutions of the Harry Dym equation
    Li, Hongyu
    Xu, Jian
    APPLIED MATHEMATICS LETTERS, 2020, 104 (104)
  • [35] STABILITY OF A SOLITON SOLUTION OF A NONLINEAR SCHRODINGER-EQUATION
    ZHIDKOV, PE
    DIFFERENTIAL EQUATIONS, 1986, 22 (06) : 703 - 711
  • [36] Two-soliton solution of ion acoustic solitary waves in nonplanar geometry
    Biswajit Sahu
    Rajkumar Roychoudhury
    Astrophysics and Space Science, 2013, 345 : 91 - 98
  • [37] Two-soliton solution of ion acoustic solitary waves in nonplanar geometry
    Sahu, Biswajit
    Roychoudhury, Rajkumar
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 345 (01) : 91 - 98
  • [38] The N-soliton solution of a two-component modified nonlinear Schrodinger equation
    Matsuno, Yoshimasa
    PHYSICS LETTERS A, 2011, 375 (34) : 3090 - 3094
  • [39] Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrodinger Equation
    Tikan, Alexey
    Billet, Cyril
    El, Gennady
    Tovbis, Alexander
    Bertola, Marco
    Sylvestre, Thibaut
    Gustave, Francois
    Randoux, Stephane
    Genty, Goery
    Suret, Pierre
    Dudley, John M.
    PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [40] Two-Soliton Interaction Within the Framework of the Modified Korteweg–de Vries Equation
    E. N. Pelinovsky
    E. G. Shurgalina
    Radiophysics and Quantum Electronics, 2015, 57 : 737 - 744