A two-soliton solution of cubic Schrodinger equation

被引:1
|
作者
Yan, JR
Chou, GH
Wang, XG
机构
来源
CHINESE PHYSICS LETTERS | 1996年 / 13卷 / 01期
关键词
D O I
10.1088/0256-307X/13/1/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An exact two-soliton solution of cubic Schrodinger equation is derived by using the inverse scattering method, where the transmission coefficient has one pole of second order instead of two simple poles. This solution describes such a process that two infiniteIy separated solitons approach and then pass through each other and keep straight on infinitely.
引用
下载
收藏
页码:17 / 19
页数:3
相关论文
共 50 条
  • [21] One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrodinger equation
    Yang, Chunyu
    Liu, Wenjun
    Zhou, Qin
    Mihalache, Dumitru
    Malomed, Boris A.
    NONLINEAR DYNAMICS, 2019, 95 (01) : 369 - 380
  • [22] Soliton Solution of Schrodinger Equation Using Cubic B-Spline Galerkin Method
    Iqbal, Azhar
    Abd Hamid, Nur Nadiah
    Ismail, Ahmad Izani Md
    FLUIDS, 2019, 4 (02)
  • [23] Formation of soliton pulses based on Schrodinger cubic equation
    Shcherbakov, AS
    Andreeva, EI
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1996, 22 (11): : 67 - 72
  • [24] Degenerate behaviors and decompositions of the two-soliton solution in the (1+1)-dimensional Ito equation
    Wang, Lirong
    Wang, Chuanjian
    Li, Changzhao
    Wang, Yuye
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [25] Perturbation of a two-soliton solution of the Korteweg-de Vries equation in the case of close amplitudes
    Lazarev, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 118 (03) : 341 - 346
  • [26] Stochastic exact solutions and two-soliton solution of the Wick-type stochastic KdV equation
    Dai, Chao-Qing
    Zhang, Jie-Fang
    EPL, 2009, 86 (04)
  • [27] Perturbation of a two-soliton solution of the Korteweg-de vries equation in the case of close amplitudes
    V. A. Lazarev
    Theoretical and Mathematical Physics, 1999, 118 : 341 - 346
  • [28] Dark two-soliton solutions for nonlinear Schrodinger equations in inhomogeneous optical fibers
    Liu, Xiaoyan
    Luan, Zitong
    Zhou, Qin
    Liu, Wenjun
    Biswas, Anjan
    CHINESE JOURNAL OF PHYSICS, 2019, 61 : 310 - 315
  • [29] Two-soliton solutions of the sine-Gordon equation and pseudospherical surfaces
    Maevskij, E.V.
    Vestnik Moskovskogo Universita. Ser. 3 Fizika Astronomiya, 2002, (03): : 10 - 13
  • [30] New complexion two-soliton solutions of a class of nonlinear evolution equation
    Taogetusang
    Yi Li-Na
    ACTA PHYSICA SINICA, 2015, 64 (02)