Composition duality and maximal monotonicity

被引:56
|
作者
Robinson, SM [1 ]
机构
[1] Univ Wisconsin, Dept Ind Engn, Madison, WI 53706 USA
关键词
Attouch-Thera duality; conjugate duality; Mosco duality; maximal monotone operator; generalized equation; splitting algorithm;
D O I
10.1007/s101070050043
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper shows how the Attouch-Thera duality principle for operator inclusions can be extended to compositions of multifunctions, so that the primal and dual inclusions may involve operators between different pairs of spaces. We first present the extension and give an example from computational economics to demonstrate that it has practical utility. Then we consider a particular case, often found in applications, involving real Hilbert spaces and maximal monotone operators. We show that in this case our duality framework includes those previously developed by Rockafellar, Mosco, and Gabay. Finally we demonstrate that in this case, under very simple hypotheses the duality transformation preserves the maximal monotonicity of the operators involved. This proof uses an apparently new criterion for maximal monotonicity of operators of the form L*TL, where T is maximal monotone and L is linear and continuous with adjoint L*.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] On the Maximal Monotonicity of Diagonal Subdifferential Operators
    Iusem, A. N.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1705 - 1706
  • [32] Some criteria for maximal abstract monotonicity
    Mohebi, H.
    Martinez-Legaz, J. -E.
    Rocco, M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (02) : 137 - 163
  • [33] Weaker constraint qualifications in maximal monotonicity
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    Wanka, Gert
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (1-2) : 27 - 41
  • [34] MAXIMAL MONOTONICITY FOR THE PRECOMPOSITION WITH A LINEAR OPERATOR
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    Wanka, Gert
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2007, 17 (04) : 1239 - 1252
  • [35] On maximal monotonicity of bifunctions on Hadamard manifolds
    Cruz Neto, J. X.
    Jacinto, F. M. O.
    Soares, P. A., Jr.
    Souza, J. C. O.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 591 - 601
  • [36] Some criteria for maximal abstract monotonicity
    H. Mohebi
    J.-E. Martínez-Legaz
    M. Rocco
    [J]. Journal of Global Optimization, 2012, 53 : 137 - 163
  • [37] Some Conditions for Maximal Monotonicity of Bifunctions
    Hadjisavvas, Nicolas
    Jacinto, Flavia M. O.
    Martinez-Legaz, Juan E.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (02) : 323 - 332
  • [38] On limitwise monotonicity and maximal block functions
    Harris, Charles M.
    [J]. COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2015, 4 (02): : 119 - 139
  • [39] Maximal monotonicity via convex analysis
    Borwein, Jonathan M.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2006, 13 (3-4) : 561 - 586
  • [40] On the Maximal Monotonicity of Diagonal Subdifferential Operators
    Iusem, A. N.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2011, 18 (02) : 489 - 503