Weaker constraint qualifications in maximal monotonicity

被引:11
|
作者
Bot, Radu Ioan [1 ]
Grad, Sorin-Mihai [1 ]
Wanka, Gert [1 ]
机构
[1] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
关键词
Brezis-Haraux-type approximation; Fitzpatrick function; maximal monotone operator; subdifferential;
D O I
10.1080/01630560701190224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a sufficient condition, weaker than the others known so far, that guarantees that the sum of two maximal monotone operators on a reflexive Banach space is maximal monotone. Then we give a weak constraint qualification assuring the Brezis - Haraux- type approximation of the range of the sum of the subdifferentials of two proper convex lower-semicontinuous functions in nonreflexive Banach spaces, extending and correcting an earlier result due to Riahi.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 50 条
  • [1] Enhanced Karush–Kuhn–Tucker condition and weaker constraint qualifications
    Jane J. Ye
    Jin Zhang
    [J]. Mathematical Programming, 2013, 139 : 353 - 381
  • [2] Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications
    Ye, Jane J.
    Zhang, Jin
    [J]. MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 353 - 381
  • [3] ON CONSTRAINT QUALIFICATIONS
    HENRION, R
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 72 (01) : 187 - 197
  • [4] CONSTRAINT QUALIFICATIONS REVISITED
    BAZARAA, MS
    GOODE, JJ
    SHETTY, CM
    [J]. MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (09): : 567 - 573
  • [5] Techniques for maximal monotonicity
    Simons, S
    [J]. CALCULUS OF VARIATIONS AND DIFFERENTIAL EQUATIONS, 2000, 410 : 232 - 250
  • [6] Maximal monotonicity of bifunctions
    Hadjisavvas, N.
    Khatibzadeh, H.
    [J]. OPTIMIZATION, 2010, 59 (02) : 147 - 160
  • [7] "Densities" and Maximal Monotonicity
    Simons, Stephen
    [J]. JOURNAL OF CONVEX ANALYSIS, 2016, 23 (04) : 1017 - 1050
  • [8] Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators
    Bauschke, HH
    Borwein, JM
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (01) : 1 - 20
  • [9] Constraint qualifications for nonsmooth programming
    Huang, Liren
    Tan, Lulin
    Liu, Chunguang
    [J]. OPTIMIZATION, 2018, 67 (12) : 2139 - 2155
  • [10] On Constraint qualifications of a nonconvex inequality
    Zhou Wei
    Jen-Chih Yao
    [J]. Optimization Letters, 2018, 12 : 1117 - 1139