Weaker constraint qualifications in maximal monotonicity

被引:11
|
作者
Bot, Radu Ioan [1 ]
Grad, Sorin-Mihai [1 ]
Wanka, Gert [1 ]
机构
[1] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
关键词
Brezis-Haraux-type approximation; Fitzpatrick function; maximal monotone operator; subdifferential;
D O I
10.1080/01630560701190224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a sufficient condition, weaker than the others known so far, that guarantees that the sum of two maximal monotone operators on a reflexive Banach space is maximal monotone. Then we give a weak constraint qualification assuring the Brezis - Haraux- type approximation of the range of the sum of the subdifferentials of two proper convex lower-semicontinuous functions in nonreflexive Banach spaces, extending and correcting an earlier result due to Riahi.
引用
下载
收藏
页码:27 / 41
页数:15
相关论文
共 50 条
  • [41] Maximal monotonicity, conjugation and the duality product
    Burachik, RS
    Svaiter, BF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) : 2379 - 2383
  • [42] LC-FUNCTIONS AND MAXIMAL MONOTONICITY
    Simons, Stephen
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2006, 7 (01) : 123 - 138
  • [43] Some Conditions for Maximal Monotonicity of Bifunctions
    Nicolas Hadjisavvas
    Flávia M. O. Jacinto
    Juan E. Martínez-Legaz
    Set-Valued and Variational Analysis, 2016, 24 : 323 - 332
  • [44] On maximal monotonicity of bifunctions on Hadamard manifolds
    J. X. Cruz Neto
    F. M. O. Jacinto
    P. A. Soares
    J. C. O. Souza
    Journal of Global Optimization, 2018, 72 : 591 - 601
  • [45] Maximal directions of monotonicity of an aggregation function
    De Baets, B.
    De Meyer, H.
    FUZZY SETS AND SYSTEMS, 2022, 433 : 54 - 78
  • [46] MAXIMAL MONOTONICITY FOR THE PRECOMPOSITION WITH A LINEAR OPERATOR
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    Wanka, Gert
    SIAM JOURNAL ON OPTIMIZATION, 2007, 17 (04) : 1239 - 1252
  • [47] Some criteria for maximal abstract monotonicity
    Mohebi, H.
    Martinez-Legaz, J. -E.
    Rocco, M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (02) : 137 - 163
  • [48] On the Maximal Monotonicity of Diagonal Subdifferential Operators
    Iusem, A. N.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1705 - 1706
  • [49] On maximal monotonicity of bifunctions on Hadamard manifolds
    Cruz Neto, J. X.
    Jacinto, F. M. O.
    Soares, P. A., Jr.
    Souza, J. C. O.
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 591 - 601
  • [50] Some criteria for maximal abstract monotonicity
    H. Mohebi
    J.-E. Martínez-Legaz
    M. Rocco
    Journal of Global Optimization, 2012, 53 : 137 - 163