The D-optimal saturated designs of order 22

被引:3
|
作者
Chasiotis, Vasilis [1 ]
Kounias, Stratis [2 ]
Farmakis, Nikos [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[2] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Information matrices; Maximum determinant; Equivalent matrices; SUPPLEMENTARY DIFFERENCE SETS; N=2 MOD 4; MAXIMAL (+1; CONSTRUCTION; MATRICES;
D O I
10.1016/j.disc.2017.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper attempts to prove the D-optimality of the saturated designs X* and X** of order 22, already existing in the current literature. The corresponding non-equivalent information matrices M*=(X*)X-T* and M**=(X**)X-T** have the maximum determinant. Within the application of a specific procedure, all symmetric and positive definite matrices M of order 22 with determinant the square of an integer and >= det(M*) are constructed. This procedure has indicated that there are 26 such non-equivalent matrices M, for 24 of which the non-existence of designs X such that (XX)-X-T=M is proved. The remaining two matrices M are the information matrices M* and M**. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:380 / 387
页数:8
相关论文
共 50 条
  • [41] Minimax D-optimal designs for the logistic model
    King, J
    Wong, WK
    [J]. BIOMETRICS, 2000, 56 (04) : 1263 - 1267
  • [42] NESTING D-OPTIMAL DESIGNS WITH SPECIFIC INTERACTIONS
    Chiu, Wan-Yi
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2021, 70 (01) : 1 - 10
  • [43] D-optimal weighing designs for six objects
    Michael G. Neubauer
    William Watkins
    Joel Zeitlin
    [J]. Metrika, 2000, 52 : 185 - 211
  • [44] D-optimal designs via a cocktail algorithm
    Yu, Yaming
    [J]. STATISTICS AND COMPUTING, 2011, 21 (04) : 475 - 481
  • [45] RECURRENCE MOMENT FORMULAS FOR D-OPTIMAL DESIGNS
    DETTE, H
    WONG, WK
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1995, 22 (04) : 505 - 512
  • [46] ALGORITHM FOR CONSTRUCTION OF D-OPTIMAL EXPERIMENTAL DESIGNS
    MITCHELL, TJ
    [J]. TECHNOMETRICS, 1974, 16 (02) : 203 - 210
  • [47] D-optimal weighing designs for six objects
    Neubauer, MG
    Watkins, W
    Zeitlin, J
    [J]. METRIKA, 2000, 52 (03) : 185 - 211
  • [48] D-optimal designs for Poisson regression models
    Wang, Yanping
    Myers, Raymond H.
    Smith, Eric. P.
    Ye, Keying
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (08) : 2831 - 2845
  • [49] D-Optimal designs for quadratic regression models
    van Berkum, EEM
    Pauwels, B
    Upperman, PM
    [J]. ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 189 - 195
  • [50] D-optimal minimax fractional factorial designs
    Lin, Dennis K. J.
    Zhou, Julie
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (02): : 325 - 340