Quantum geometry and quantum mechanics of integrable systems

被引:3
|
作者
Karasev, M. V. [1 ]
机构
[1] Moscow Inst Elect & Math, Dept Appl Math, Moscow 109028, Russia
关键词
Mathematical Physic; Integrable System; Poisson Bracket; Symplectic Form; Symplectic Structure;
D O I
10.1134/S1061920809010051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum integrable systems and their classical counterparts are considered. We show that the symplectic structure and invariant tori of the classical system can be deformed by a quantization parameter &Aumlaut to produce a new (classical) integrable system. The new tori selected by the &Aumlaut -equidistance rule represent the spectrum of the quantum system up to O(z) and are invariant under quantum dynamics in the long-time range O(z). The quantum diffusion over the deformed tori is described. The analytic apparatus uses quantum action-angle coordinates explicitly constructed by an &Aumlaut -deformation of the classical action-angles.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 50 条