On the Geometric Structure of Minimal Dilations on Hilbert C*-Modules

被引:0
|
作者
Popovici, D. [1 ]
机构
[1] West Univ Timisoara, Dept Math, Timisoara 1900, Romania
来源
关键词
Hilbert C*-modules; adjointable contractions; Wold-type decompositions; isometric and unitary dilations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We build a unitary extension for an isometry on a Hilbert C*-module and then, with this extension help, we obtain the minimal unitary dilation for an adjointable contraction starting from one of its isometric dilations. Having as a starting point a result of B.Sz. - Nagy and C. Foias regarding the geometric structure of the minimal unitary dilations for Hilbert space contractions we prove that this structure maintains itself on Hilbert modules. Finally, we present a necessary and sufficient condition on the minimal isometric dilation in order to admits a Wold-type decomposition, condition which also assures the complementability of the residual part space of the minimal unitary dilation.
引用
收藏
页码:379 / 392
页数:14
相关论文
共 50 条
  • [31] A SURVEY ON EXTENSIONS OF HILBERT C*-MODULES
    Kolarec, Biserka
    QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 29 : 209 - 221
  • [32] ON ORTHOGONAL SYSTEMS IN HILBERT C*-MODULES
    Landi, Giovanni
    Pavlov, Alexander
    JOURNAL OF OPERATOR THEORY, 2012, 68 (02) : 487 - 500
  • [33] On equivariant embedding of Hilbert C* modules
    Goswami, Debashish
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (01): : 63 - 70
  • [34] Invertibility of Multipliers in Hilbert C*-modules
    Rashidi-Kouchi, M.
    Rahimi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 21 - 37
  • [35] Geometrical aspects of Hilbert C*-modules
    Frank, M
    POSITIVITY, 1999, 3 (03) : 215 - 243
  • [36] On∗-fusion frames for Hilbert C∗-modules
    Assila, Nadia
    Kabbaj, Samir
    Zoubeir, Hicham
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [37] Pullback diagram of Hilbert C*-modules
    Amyari, Maryam
    Chakoshi, Mahnaz
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 569 - 575
  • [38] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [39] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70
  • [40] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110