Geometrical aspects of Hilbert C*-modules

被引:40
|
作者
Frank, M [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
D O I
10.1023/A:1009729204027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to solve some major open problems of Hilbert C*-module theory by applying various aspects of multiplier C*-theory. The key result is the equivalence established between positive invertible quasi-multipliers of the C*-algebra of "compact'' operators on a Hilbert C*-module {M, <., .> } and A-valued inner products on M, inducing an equivalent norm to the given one. The problem of unitary isomorphism of C*-valued inner products on a Hilbert C*-module is considered and new criteria are formulated. Countably generated Hilbert C*-modules turn out to be unitarily isomorphic if they are isomorphic as Banach C*-modules. The property of bounded module operators on Hilbert C*-modules of being "compact'' and/or adjointable is unambiguously connected to operators with respect to any choice of the C*-valued inner product on a fixed Hilbert C*-module if every bounded module operator possesses an adjoint operator on the module. Every bounded module operator on a given full Hilbert C*-module turns out to be adjointable if the Hilbert C*-module is orthogonally complementary. Moreover, if the unit ball of the Hilbert C*-module is complete with respect to a certain locally convex topology, then these two properties are shown to be equivalent to self-duality.
引用
收藏
页码:215 / 243
页数:29
相关论文
共 50 条
  • [1] Geometrical Aspects of Hilbert C*-modules
    Michael Frank
    Positivity, 1999, 3 : 215 - 243
  • [2] A Hilbert bundle characterization of Hilbert C*-modules
    Elliott, George A.
    Kawamura, Katsunori
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) : 4841 - 4862
  • [3] Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators
    Manuilov, Vladimir
    Troitsky, Evgenij
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (03)
  • [4] Graded Hilbert C*-modules
    Wang, Chunxiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [5] Quaternion Hilbert C*-modules
    Omran, Saleh
    Ahmedi, A. El-Sayed
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (05) : 810 - 818
  • [6] Isometries of hilbert C*-modules
    Solel, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (11) : 4637 - 4660
  • [7] Hilbert C*-modules with a predual
    Schweizer, J
    JOURNAL OF OPERATOR THEORY, 2002, 48 (03) : 621 - 632
  • [8] Extensions of Hilbert C*-modules
    Bakic, D
    Guljas, B
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 537 - 558
  • [9] FRAMES IN HILBERT C*-MODULES
    Alijani, A.
    Dehghan, M. A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2011, 73 (04): : 89 - 106
  • [10] Hilbert C*-modules and *-isomorphisms
    Asadi, Mohammad B.
    JOURNAL OF OPERATOR THEORY, 2008, 59 (02) : 431 - 434