A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy

被引:77
|
作者
Santos, Sergio [1 ,2 ,3 ]
Guang, Li [3 ]
Souier, Tewfik [3 ]
Gadelrab, Karim [3 ]
Chiesa, Matteo [3 ]
Thomson, Neil H. [1 ,2 ]
机构
[1] Univ Leeds, Dept Oral Biol, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[3] Masdar Inst Sci & Technol, Lab Energy & Nanosci, Abu Dhabi, U Arab Emirates
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2012年 / 83卷 / 04期
关键词
VIBRATING TIP; ENERGY-DISSIPATION; MICROLEVER SYSTEM; BEHAVIOR; CONTACT; CALIBRATION; CONTRAST;
D O I
10.1063/1.4704376
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704376]
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Nonlinear dynamics for estimating the tip radius in atomic force microscopy
    Trinidad, E. Rull
    Gribnau, T. W.
    Belardinelli, P.
    Staufer, U.
    Alijani, F.
    APPLIED PHYSICS LETTERS, 2017, 111 (12)
  • [2] Continuous monitoring of tip radius during atomic force microscopy imaging
    Fraxedas, J.
    Perez-Murano, F.
    Gramazio, F.
    Lorenzoni, M.
    Trinidad, E. Rull
    Staufer, U.
    SCANNING MICROSCOPIES 2015, 2015, 9636
  • [3] EFFECTS OF HUMIDITY AND TIP RADIUS ON THE ADHESIVE FORCE MEASURED WITH ATOMIC-FORCE MICROSCOPY
    SUGAWARA, Y
    OHTA, M
    KONISHI, T
    MORITA, S
    SUZUKI, M
    ENOMOTO, Y
    WEAR, 1993, 168 (1-2) : 13 - 16
  • [4] METHOD OF DETERMINING TIP STRUCTURE IN ATOMIC FORCE MICROSCOPY
    PAIK, SM
    KIM, S
    SCHULLER, IK
    PHYSICAL REVIEW B, 1991, 44 (07): : 3272 - 3276
  • [5] Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy
    Ramos, Jorge R.
    APPLIED PHYSICS LETTERS, 2014, 105 (04)
  • [6] Tip characterizer for atomic force microscopy
    Itoh, Hiroshi
    Fujimoto, Toshiyuki
    Ichimura, Shingo
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [7] Nanoscale elasticity measurement with in situ tip shape estimation in atomic force microscopy
    Yamanaka, K
    Tsuji, T
    Noguchi, A
    Koike, T
    Mihara, T
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (06): : 2403 - 2408
  • [8] Self-assembled polystyrene nanospheres for the evaluation of atomic force microscopy tip curvature radius
    Colombi, P.
    Alessandri, I.
    Bergese, P.
    Federici, S.
    Depero, L. E.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (08)
  • [9] A simple and effective method of evaluating atomic force microscopy tip performance
    Nie, HY
    McIntyre, NS
    LANGMUIR, 2001, 17 (02) : 432 - 436
  • [10] A method for in situ characterization of tip shape in ac-mode atomic force microscopy using electrostatic interaction
    Olsson, L
    Lin, N
    Yakimov, V
    Erlandsson, R
    JOURNAL OF APPLIED PHYSICS, 1998, 84 (08) : 4060 - 4064