TAFNet: A Three-Stream Adaptive Fusion Network for RGB-T Crowd Counting

被引:24
|
作者
Tang, Haihan [1 ]
Wang, Yi [1 ]
Chau, Lap-Pui [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
关键词
RGB-T; crowd counting; three-stream network;
D O I
10.1109/ISCAS48785.2022.9937583
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a three-stream adaptive fusion network named TAFNet, which uses paired RGB and thermal images for crowd counting. Specifically, TAFNet is divided into one main stream and two auxiliary streams. We combine a pair of RGB and thermal images to constitute the input of main stream. Two auxiliary streams respectively exploit RGB image and thermal image to extract modality-specific features. Besides, we propose an Information Improvement Module (IIM) to fuse the modality-specific features into the main stream adaptively. Experiment results on RGBT-CC dataset show that our method achieves more than 20% improvement on mean average error and root mean squared error compared with state-of-the-art method. The source code will be publicly available at https://github.com/TANGHAIHAN/TAFNet.
引用
收藏
页码:3299 / 3303
页数:5
相关论文
共 50 条
  • [41] CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Huang, Liming
    Yan, Yunhui
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2949 - 2961
  • [42] Residual learning-based two-stream network for RGB-T object tracking
    Chen, Yili
    Wan, Minjie
    Xu, Yunkai
    Zhang, Xiaojie
    Chen, Qian
    Gu, Guohua
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [43] TSNet: Three-Stream Self-Attention Network for RGB-D Indoor Semantic Segmentation
    Zhou, Wujie
    Yuan, Jianzhong
    Lei, Jingsheng
    Luo, Ting
    [J]. IEEE INTELLIGENT SYSTEMS, 2021, 36 (04) : 73 - 78
  • [44] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    [J]. Frontiers in Neurorobotics, 2024, 18
  • [45] ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection
    Zhou, Wujie
    Guo, Qinling
    Lei, Jingsheng
    Yu, Lu
    Hwang, Jenq-Neng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1224 - 1235
  • [46] TSFNet: Two-Stage Fusion Network for RGB-T Salient Object Detection
    Guo, Qinling
    Zhou, Wujie
    Lei, Jingsheng
    Yu, Lu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1655 - 1659
  • [47] Convolutional Three-stream Network Fusion for Driver Fatigue Detection from Infrared Videos
    Ma, Xiaoxi
    Chau, Lap-Pui
    Yap, Kim-Hui
    Ping, Guiju
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [48] Multi-enhanced Adaptive Attention Network for RGB-T Salient Object Detection
    Hao, Hao-Zhou
    Cheng, Yao
    Ji, Yi
    Li, Ying
    Liu, Chun-Ping
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION
    Sun, Fengming
    Zhang, Kang
    Yuan, Xia
    Zhao, Chunxia
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1300 - 1304
  • [50] A scale adaptive network for crowd counting
    Zhang, Youmei
    Zhou, Chunluan
    Chang, Faliang
    Kot, Alex C.
    [J]. NEUROCOMPUTING, 2019, 362 : 139 - 146