A STOCHASTIC MINIMUM SPANNING FOREST APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES

被引:0
|
作者
Bernard, K. [1 ,2 ]
Tarabalka, Y. [3 ]
Angulo, J. [4 ]
Chanussot, J. [5 ]
Benediktsson, J. A. [1 ]
机构
[1] Univ Iceland, Reykjavik, Iceland
[2] Heriot Watt Univ, Edinburgh, Midlothian, Scotland
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] MINES Paris Tech, Ctr Math Morphol, Paris, France
[5] Grenoble Inst Technol, Dept Image & Signal, GIPSA Lab, Grenoble, France
关键词
Hyperspectral image; classification; multiple classifiers; stochastic markers; minimum spanning forest;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method for supervised hyperspectral data classification is proposed. In particular, the notion of Stochastic Minimum Spanning Forests (MSFs) is introduced. For a given hyperspectral image, a pixelwise classification is first performed. From this classification map, M marker maps are generated by randomly selecting pixels and labeling them as markers for the construction of MSFs. The next step consists in building an MSF from each of the M marker maps. Finally, all the M realizations are aggregated with a maximum vote decision rule, resulting in a final classification map. The experimental results presented on an AVIRIS image of the vegetation area show that the proposed approach yields accurate classification maps, and thus is attractive for hyperspectral data analysis.
引用
收藏
页码:1265 / 1268
页数:4
相关论文
共 50 条
  • [11] Hyperspectral Images Classification by Spectral-Spatial Processing
    Imani, Maryam
    Ghassemian, Hassan
    [J]. 2016 8TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2016, : 456 - 461
  • [12] AN ENSEMBLE ACTIVE LEARNING APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Zhang, Zhou
    Crawford, Melba M.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4963 - 4966
  • [13] SPECTRAL-SPATIAL ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5126 - 5129
  • [14] Spectral-Spatial Rotation Forest for Hyperspectral Image Classification
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4605 - 4613
  • [15] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH GAUSSIAN PROCESS
    Sun, Shujin
    Zhong, Ping
    Xiao, Huaitie
    Chen, Yuting
    Gong, Zhiqiang
    Wang, Runsheng
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 473 - 476
  • [16] A Probabilistic Framework for Spectral-Spatial Classification of Hyperspectral Images
    Liu, Jinlin
    Lu, Wenkai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09): : 5375 - 5384
  • [17] A New Methodology for Spectral-Spatial Classification of Hyperspectral Images
    Miao, Zelang
    Shi, Wenzhong
    [J]. JOURNAL OF SENSORS, 2016, 2016
  • [18] A novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification
    Jing Lv
    Huimin Zhang
    Ming Yang
    Wanqi Yang
    [J]. GeoInformatica, 2020, 24 : 827 - 848
  • [19] Automatic Attribute Profiles for Spectral-Spatial Classification of Hyperspectral Images
    Das, Arundhati
    Bhardwaj, Kaushal
    Patra, Swarnajyoti
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 13 - 21
  • [20] AN EXTENDED SPECTRAL-SPATIAL CLASSIFICATION APPROACH FOR HYPERSPECTRAL DATA
    Akbari, D.
    [J]. 4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 37 - 41